Model structures on commutative monoids in general model categories

被引:26
作者
White, David [1 ]
机构
[1] Denison Univ, Granville, OH 43023 USA
关键词
HOMOTOPY-THEORY; RESOLUTION; ALGEBRAS; OPERADS; SPACES;
D O I
10.1016/j.jpaa.2017.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide conditions on a monoidal model category M so that the category of commutative monoids in M inherits a model structure from M in which a map is a weak equivalence or fibration if and only if it is so in M. We then investigate properties of cofibrations of commutative monoids, rectification between Boo-algebras and commutative monoids, the relationship between commutative monoids and monoidal Bousfield localization functors, when the category of commutative monoids can be made left" proper, and functoriality of the passage from a commutative monoid R to the category of commutative R-algebras. In the final section we provide numerous examples of model categories satisfying our hypotheses. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3124 / 3168
页数:45
相关论文
共 59 条
[1]   LEFT AND RIGHT MODEL CATEGORIES AND LEFT AND RIGHT BOUSFIELD LOCALIZATIONS [J].
Barwick, Clark .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (02) :245-320
[2]  
Batanin Michael, 2016, PREPRINT
[3]  
Batanin Michael, 2017, THEORY APPL CATEG, V32
[4]   Sheafifiable homotopy model categories [J].
Beke, T .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 129 :447-475
[5]   Axiomatic homotopy theory for operads [J].
Berger, C ;
Moerdijk, I .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :805-831
[6]  
Berger C, 2007, CONTEMP MATH, V431, P31
[7]   The Boardman-Vogt resolution of operads in monoidal model categories [J].
Berger, Clemens ;
Moerdijk, Ieke .
TOPOLOGY, 2006, 45 (05) :807-849
[8]   Operadic multiplications in equivariant spectra, norms, and transfers [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ADVANCES IN MATHEMATICS, 2015, 285 :658-708
[9]   Obstruction theory in model categories [J].
Christensen, JD ;
Dwyer, WG ;
Isaksen, DC .
ADVANCES IN MATHEMATICS, 2004, 181 (02) :396-416
[10]  
Dundas Bjorn Ian, 2003, Doc. Math., V8, P409