Multi-group cancer outlier differential gene expression detection

被引:12
作者
Liu, Fang [1 ]
Wu, Baolin [1 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
关键词
cancer gene activation heterogeneity; differential gene expression detection; false discovery rate; microarray; outlier; robust regression;
D O I
10.1016/j.compbiolchem.2007.02.004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It has recently been shown that cancer genes (oncogenes) tend to have heterogeneous expressions across disease samples. So it is reasonable to assume that in a microarray data only a subset of disease samples will be activated (often referred to as outliers), which presents some new challenges for statistical analysis. In this paper, we study the multi-class cancer outlier differential gene expression detection. Statistical methods will be proposed to take into account the expression heterogeneity. Through simulation studies and application to public microarray data, we will show that the proposed methods could provide more comprehensive analysis results and improve upon the traditional differential gene expression detection methods, which often ignore the expression heterogeneity and may loss power. Supplementary information can be found at http://www.biostat.umn.edu/similar to baolin/research/orf.htmi. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 11 条
  • [1] [Anonymous], 2004, Applied linear regression models
  • [2] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [3] A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    Bolstad, BM
    Irizarry, RA
    Åstrand, M
    Speed, TP
    [J]. BIOINFORMATICS, 2003, 19 (02) : 185 - 193
  • [4] Dudoit S, 2002, STAT SINICA, V12, P111
  • [5] Bioconductor: open software development for computational biology and bioinformatics
    Gentleman, RC
    Carey, VJ
    Bates, DM
    Bolstad, B
    Dettling, M
    Dudoit, S
    Ellis, B
    Gautier, L
    Ge, YC
    Gentry, J
    Hornik, K
    Hothorn, T
    Huber, W
    Iacus, S
    Irizarry, R
    Leisch, F
    Li, C
    Maechler, M
    Rossini, AJ
    Sawitzki, G
    Smith, C
    Smyth, G
    Tierney, L
    Yang, JYH
    Zhang, JH
    [J]. GENOME BIOLOGY, 2004, 5 (10)
  • [6] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [7] Outlier sums for differential gene expression analysis
    Tibshirani, Robert
    Hastie, Trevor
    [J]. BIOSTATISTICS, 2007, 8 (01) : 2 - 8
  • [8] Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
    Tomlins, SA
    Rhodes, DR
    Perner, S
    Dhanasekaran, SM
    Mehra, R
    Sun, XW
    Varambally, S
    Cao, XH
    Tchinda, J
    Kuefer, R
    Lee, C
    Montie, JE
    Shah, RB
    Pienta, KJ
    Rubin, MA
    Chinnaiyan, AM
    [J]. SCIENCE, 2005, 310 (5748) : 644 - 648
  • [9] Nonparametric methods for identifying differentially expressed genes in microarray data
    Troyanskaya, OG
    Garber, ME
    Brown, PO
    Botstein, D
    Altman, RB
    [J]. BIOINFORMATICS, 2002, 18 (11) : 1454 - 1461
  • [10] Predicting the clinical status of human breast cancer by using gene expression profiles
    West, M
    Blanchette, C
    Dressman, H
    Huang, E
    Ishida, S
    Spang, R
    Zuzan, H
    Olson, JA
    Marks, JR
    Nevins, JR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) : 11462 - 11467