Multigrid renormalization

被引:36
作者
Lubasch, Michael [1 ]
Moinier, Pierre [2 ]
Jaksch, Dieter [1 ,3 ,4 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] BAE Syst MAI, Computat Engn, Buckingham House,FPC 267 POB 5, Bristol BS34 7QW, Avon, England
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[4] Univ Oxford, Keble Coll, Parks Rd, Oxford OX1 3PG, England
基金
英国工程与自然科学研究理事会;
关键词
Multigrid methods; Numerical renormalization group; Density matrix renormalization group; Variational renormalization group methods; Matrix product states; Quantics tensor trains; MATRIX PRODUCT STATES; SYSTEMS; APPROXIMATION;
D O I
10.1016/j.jcp.2018.06.065
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We combine the multigrid (MG) method with state-of-the-art concepts from the variational formulation of the numerical renormalization group. The resulting MG renormalization (MGR) method is a natural generalization of the MG method for solving partial differential equations. When the solution on a grid of N points is sought, our MGR method has a computational cost scaling as O(log(N)), as opposed to O(N) for the best standard MG method. Therefore MGR can exponentially speed up standard MG computations. To illustrate our method, we develop a novel algorithm for the ground state computation of the nonlinear Schrodinger equation. Our algorithm acts variationally on tensor products and updates the tensors one after another by solving a local nonlinear optimization problem. We compare several different methods for the nonlinear tensor update and find that the Newton method is the most efficient as well as precise. The combination of MGR with our nonlinear ground state algorithm produces accurate results for the nonlinear Schrodinger equation on N = 10(18) grid points in three spatial dimensions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:587 / 602
页数:16
相关论文
共 57 条
[1]   The tensor network theory library [J].
Al-Assam, S. ;
Clark, S. R. ;
Jaksch, D. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[2]   Capturing long range correlations in two-dimensional quantum lattice systems using correlator product states [J].
Al-Assam, S. ;
Clark, S. R. ;
Foot, C. J. ;
Jaksch, D. .
PHYSICAL REVIEW B, 2011, 84 (20)
[3]  
[Anonymous], ARXIVQUANTPH9612028V
[4]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[5]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[6]   Renormalization and tensor product states in spin chains and lattices [J].
Cirac, J. Ignacio ;
Verstraete, Frank .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[7]   Variational optimization with infinite projected entangled-pair states [J].
Corboz, Philippe .
PHYSICAL REVIEW B, 2016, 94 (03)
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   Algebraically contractible topological tensor network states [J].
Denny, S. J. ;
Biamonte, J. D. ;
Jaksch, D. ;
Clark, S. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (01)
[10]   NUMERICAL-SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION FOR SMALL SAMPLES OF TRAPPED NEUTRAL ATOMS [J].
EDWARDS, M ;
BURNETT, K .
PHYSICAL REVIEW A, 1995, 51 (02) :1382-1386