Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis

被引:13
作者
Ye, Wen-Chu [1 ]
Huang, Shi-Feng [1 ]
Hou, Lian-Jie [1 ]
Long, Hai-Jiao [1 ,2 ]
Yin, Kai [3 ]
Hu, Ching Yuan [4 ]
Zhao, Guo-Jun [1 ]
机构
[1] Guangzhou Med Univ, Qingyuan Peoples Hosp, Affiliated Hosp 6, Qingyuan, Peoples R China
[2] Cent South Univ, Xiangya Hosp, Changsha, Peoples R China
[3] Guilin Med Univ, Affiliated Hosp 2, Guangxi Key Lab Diabet Syst Med, Guilin, Peoples R China
[4] Univ Hawaii Manoa, Coll Trop Agr & Human Resources, Dept Human Nutr Food & Anim Sci, Honolulu, HI 96822 USA
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2021年 / 8卷
关键词
cholesterol homeostasis; lncRNAs; liver disease; lipid-related diseases; cardiovascular disease; LONG NONCODING RNA; UP-REGULATION; PROMOTES ATHEROSCLEROSIS; INFLAMMATORY RESPONSE; HEPATIC LIPOGENESIS; INSULIN-RESISTANCE; LIPID-METABOLISM; CANCER; MALAT1; CONTRIBUTES;
D O I
10.3389/fcvm.2021.688546
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.
引用
收藏
页数:13
相关论文
共 148 条
[21]   Deciphering miRNAs' Action through miRNA Editing [J].
de Sousa, Marta Correia ;
Gjorgjieva, Monika ;
Dolicka, Dobrochna ;
Sobolewski, Cyril ;
Foti, Michelangelo .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (24)
[22]   Familial hypercholesterolaemia [J].
Defesche, Joep C. ;
Gidding, Samuel S. ;
Harada-Shiba, Mariko ;
Hegele, Robert A. ;
Santos, Raul D. ;
Wierzbicki, Anthony S. .
NATURE REVIEWS DISEASE PRIMERS, 2017, 3
[23]   Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development [J].
Dhuri, Karishma ;
Bechtold, Clara ;
Quijano, Elias ;
Ha Pham ;
Gupta, Anisha ;
Vikram, Ajit ;
Bahal, Raman .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (06)
[24]   The Long Noncoding RNA RP11-728F11.4 Promotes Atherosclerosis [J].
Dong, Xian-Hui ;
Lu, Zhi-Feng ;
Kang, Chun-Min ;
Li, Xue-Heng ;
Haworth, Kim E. ;
Ma, Xin ;
Lu, Jing-Bo ;
Liu, Xue-Hui ;
Fang, Fu-Chun ;
Wang, Claire S. ;
Ye, John H. ;
Zheng, Lei ;
Wang, Qian ;
Ye, Shu ;
Hu, Yan-Wei .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (03) :1191-1204
[25]   Advances towards understanding heart valve response to in injury [J].
Durbin, AD ;
Gotlieb, AI .
CARDIOVASCULAR PATHOLOGY, 2002, 11 (02) :69-77
[26]   Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening [J].
Esposito, Roberta ;
Bosch, Nuria ;
Lanzos, Andres ;
Polidori, Taisia ;
Pulido-Quetglas, Carlos ;
Johnson, Rory .
CANCER CELL, 2019, 35 (04) :545-557
[27]   EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma [J].
Fang, Runping ;
Chen, Xin ;
Zhang, Sicong ;
Shi, Hui ;
Ye, Youqiong ;
Shi, Hailing ;
Zou, Zhongyu ;
Li, Peng ;
Guo, Qing ;
Ma, Li ;
He, Chuan ;
Huang, Suyun .
NATURE COMMUNICATIONS, 2021, 12 (01)
[28]   LncRNA XIST regulates atherosclerosis progression in ox-LDL-induced HUVECs [J].
Gao, Hongmei ;
Guo, Zhaohui .
OPEN MEDICINE, 2021, 16 (01) :117-127
[29]   Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue [J].
Gao, Hui ;
Kerr, Alastair ;
Jiao, Hong ;
Hon, Chung-Chau ;
Ryden, Mikael ;
Dahlman, Ingrid ;
Arner, Peter .
EBIOMEDICINE, 2018, 30 :248-260
[30]   CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3β/β-cateninT120/TCF21 pathway [J].
Gao, Jia-Hui ;
He, Lin-Hao ;
Yu, Xiao-Hua ;
Zhao, Zhen-Wang ;
Wang, Gang ;
Zou, Jin ;
Wen, Feng-Jiao ;
Zhou, Li ;
Wan, Xiang-Jun ;
Zhang, Da-Wei ;
Tang, Chao-Ke .
JOURNAL OF LIPID RESEARCH, 2019, 60 (12) :2020-2033