Effect of organophosphorus ligands on supercritical extraction of neodymium from NdFeB magnet

被引:14
作者
Kunanusont, Nattanai [1 ]
Zhang, Jiakai [2 ]
Watada, Kimberly [2 ]
Shimoyama, Yusuke [1 ]
Azimi, Gisele [2 ]
机构
[1] Tokyo Inst Technol, Dept Chem Sci & Engn, Meguro Ku, S1-33,2-12-1 Ookayama, Tokyo 1528550, Japan
[2] Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Supercritical fluid extraction; Rare earth element; Neodymium; NdFeB magnet; COSMO-vac (vacancy) model; Organophosphorus ligand;
D O I
10.1016/j.supflu.2020.105128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supercritical fluid extraction is receiving growing attention for the enhanced extraction and separation of metals. A metal must be charge neutral and coordinatively ready to dissolve in non-polar supercritical carbon dioxide (sc-CO2). This can be accomplished by bonding the metal with a combination of negative and neutral ligands. Here, we investigate the effect of four organophosphorus reagents including triethyl phosphate (TEP), tri-n-butyl phosphate (TBP), tributyl phosphine oxide (TBPO), and trioctyl phosphine oxide (TOPO), on the extraction of neodymium from a neodymium-iron-boron magnet in sc-CO2. The COSMO-vac model is used to predict the solubility of these reagents in sc-CO2 showing the order of TEP > TBPO similar to TBP > TOPO. The stoichiometry of Nd-ligand complexes is determined via UV-Vis spectroscopy, showing a 1:1 Nd-TEP, 1:3 Nd-TBP, 1:3 Nd-TBPO, and 1:4 Nd-TOPO complex chemistry Highest neodymium extractions are achieved with TEP followed by TBP, TBPO, and TOPO, respectively. This is due to the increase in coordination number which results in more hydrophobic interactions between aliphatic functionalities, leading to larger micellar assemblies with lower solubility in sc-CO2, which result in lower extraction efficiency.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Structural insights into the multinuclear speciation of tetravalent cerium in the tri-n-butyl phosphate-n-dodecane solvent extraction system [J].
Antonio, Mark R. ;
Ellis, Ross J. ;
Estes, Shanna L. ;
Bera, Mrinal K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (32) :21304-21316
[2]   Solubility of β-diketonates, cyclopentadienyls, and cyclooctadiene complexes with various metals in supercritical carbon dioxide [J].
Aschenbrenner, Ortrud ;
Kemper, Stephen ;
Dahmen, Nicolaus ;
Schaber, Karlheinz ;
Dinjus, Eckhard .
JOURNAL OF SUPERCRITICAL FLUIDS, 2007, 41 (02) :179-186
[3]   Extraction of Rare Earth Oxides Using Supercritical Carbon Dioxide Modified with Tri-n-Butyl Phosphate-Nitric Acid Adducts [J].
Baek, Donna L. ;
Fox, Robert V. ;
Case, Mary E. ;
Sinclair, Laura K. ;
Schmidt, Alex B. ;
McIlwain, Patrick R. ;
Mincher, Bruce J. ;
Wai, Chien M. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (26) :7154-7163
[4]   Amidophosphonate ligands as cerium extractants in supercritical CO2 [J].
Bouali, Sofyane ;
Leybros, Antoine ;
Toquer, Guillaume ;
Leydier, Antoine ;
Grandjean, Agnes ;
Zemb, Thomas .
JOURNAL OF SUPERCRITICAL FLUIDS, 2019, 149 :64-69
[5]   Structural study of complexes formed by acidic and neutral organophosphorus reagents [J].
Braatz, Alexander D. ;
Antonio, Mark R. ;
Nilsson, Mikael .
DALTON TRANSACTIONS, 2017, 46 (04) :1194-1206
[6]  
Bradley J.-C., 2011, Nat. Preced, DOI DOI 10.1038/NPRE.2011.6229.1
[7]   Supercritical fluid extraction of ethanol from aqueous solutions [J].
Budich, M ;
Brunner, G .
JOURNAL OF SUPERCRITICAL FLUIDS, 2003, 25 (01) :45-55
[8]   SOLUBILITY OF SOLIDS AND LIQUIDS IN SUPERCRITICAL GASES [J].
CHRASTIL, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (15) :3016-3021
[9]  
De Fillipi M., 1980, SUPERCRITICAL FLUID
[10]  
Ding X, 2016, CRITICAL REV ANAL CH, P1