Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant

被引:41
作者
Mori, Yutaro [1 ]
Noda, Shuhei [1 ]
Shirai, Tomokazu [1 ,3 ]
Kondo, Akihiko [1 ,2 ,3 ]
机构
[1] RIKEN, Ctr Sustainable Resource Sci, Yokohama, Kanagawa, Japan
[2] Kobe Univ, Grad Sch Engn, Dept Chem Sci & Engn, Kobe, Hyogo, Japan
[3] Kobe Univ, Grad Sch Sci Technol & Innovat, Kobe, Hyogo, Japan
关键词
D O I
10.1038/s41467-021-22504-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The C4 unsaturated compound 1,3-butadiene is an important monomer in synthetic rubber and engineering plastic production. However, microorganisms cannot directly produce 1,3-butadiene when glucose is used as a renewable carbon source via biological processes. In this study, we construct an artificial metabolic pathway for 1,3-butadiene production from glucose in Escherichia coli by combining the cis,cis-muconic acid (ccMA)-producing pathway together with tailored ferulic acid decarboxylase mutations. The rational design of the substrate-binding site of the enzyme by computational simulations improves ccMA decarboxylation and thus 1,3-butadiene production. We find that changing dissolved oxygen (DO) levels and controlling the pH are important factors for 1,3-butadiene production. Using DO-stat fed-batch fermentation, we produce 2.130.17gL(-1) 1,3-butadiene. The results indicate that we can produce unnatural/nonbiological compounds from glucose as a renewable carbon source via a rational enzyme design strategy.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran [J].
Abdelrahman, Omar A. ;
Park, Dae Sung ;
Vinter, Katherine P. ;
Spanjers, Charles S. ;
Ren, Limin ;
Cho, Hong Je ;
Vlachos, Dionisios G. ;
Fan, Wei ;
Tsapatsis, Michael ;
Dauenhauer, Paul J. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05) :3732-3736
[2]   Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases [J].
Aleku, Godwin A. ;
Prause, Christoph ;
Bradshaw-Allen, Ruth T. ;
Plasch, Katharina ;
Glueck, Silvia M. ;
Bailey, Samuel S. ;
Payne, Karl A. P. ;
Parker, David A. ;
Faber, Kurt ;
Leys, David .
CHEMCATCHEM, 2018, 10 (17) :3736-3745
[3]   Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals [J].
Angelici, Carlo ;
Weckhuysen, Bert M. ;
Bruijnincx, Pieter C. A. .
CHEMSUSCHEM, 2013, 6 (09) :1595-1614
[4]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[5]   Enzymatic control of cycloadduct conformation ensures reversible 1,3-dipolar cycloaddition in a prFMN-dependent decarboxylase [J].
Bailey, Samuel S. ;
Payne, Karl A. P. ;
Saaret, Annica ;
Marshall, Stephen A. ;
Gostimskaya, Irina ;
Kosov, Iaroslav ;
Fisher, Karl ;
Hay, Sam ;
Leys, David .
NATURE CHEMISTRY, 2019, 11 (11) :1049-1057
[6]   The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerization, and catalysis [J].
Bailey, Samuel S. ;
Payne, Karl A. P. ;
Fisher, Karl ;
Marshall, Stephen A. ;
Cliff, Matthew J. ;
Spiess, Reynard ;
Parker, David A. ;
Rigby, Stephen E. J. ;
Leys, David .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (07) :2272-2287
[7]   Ferulic Acid Decarboxylase Controls Oxidative Maturation of the Prenylated Flavin Mononucleotide Cofactor [J].
Balaikaite, Arune ;
Chisanga, Malama ;
Fisher, Karl ;
Heyes, Derren J. ;
Spiess, Reynard ;
Leys, David .
ACS CHEMICAL BIOLOGY, 2020, 15 (09) :2466-2475
[8]   cis,cis-Muconic acid isomerization and catalytic conversion to biobased cyclic-C6-1,4-diacid monomers [J].
Carraher, Jack M. ;
Pfennig, Toni ;
Rao, Radhika G. ;
Shanks, Brent H. ;
Tessonnier, Jean-Philippe .
GREEN CHEMISTRY, 2017, 19 (13) :3042-3050
[9]   Direct fermentation route for the production of acrylic acid [J].
Chu, Hun Su ;
Ahn, Jin-Ho ;
Yun, Jiae ;
Choi, In Suk ;
Nam, Tae-Wook ;
Cho, Kwang Myung .
METABOLIC ENGINEERING, 2015, 32 :23-29
[10]   Synthetic biology strategies for microbial biosynthesis of plant natural products [J].
Cravens, Aaron ;
Payne, James ;
Smolke, Christina D. .
NATURE COMMUNICATIONS, 2019, 10 (1)