Collusion detection in public procurement auctions with machine learning algorithms

被引:32
|
作者
Garcia Rodriguez, Manuel J. [1 ]
Rodriguez-Montequin, Vicente [1 ]
Ballesteros-Perez, Pablo [2 ,4 ]
Love, Peter E. D. [3 ]
Signor, Regis [4 ]
机构
[1] Univ Oviedo, Project Engn Area, Oviedo 33012, Spain
[2] Univ Politecn Valencia, Dept Proyectos Ingn, Valencia 46022, Spain
[3] Curtin Univ, Sch Civil & Mech Engn, GPO Box U1987, Perth, WA 6845, Australia
[4] Brazilian Fed Police, Rua Paschoal Apostolo Pits, 4744 Floriano polis, Florianopolis, Brazil
关键词
Auction; Collusion; Contracting; Construction; Machine learning; Procurement; TACIT COLLUSION; MARKETS; BIDS;
D O I
10.1016/j.autcon.2021.104047
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Collusion is an illegal practice by which some competing companies secretly agree on the prices (bids) they will submit to a future auction. Worldwide, collusion is a pervasive phenomenon in public sector procurement. It undermines the benefits of a competitive marketplace and wastes taxpayers' money. More often than not, contracting authorities cannot identify non-competitive bids and frequently award contracts at higher prices than they would have in collusion's absence. This paper tests the accuracy of eleven Machine Learning (ML) algorithms for detecting collusion using collusive datasets obtained from Brazil, Italy, Japan, Switzerland and the United States. While the use of ML in public procurement remains largely unexplored, its potential use to identify collusion are promising. ML algorithms are quite information-intensive (they need a substantial number of historical auctions to be calibrated), but they are also highly flexible tools, producing reasonable detection rates even with a minimal amount of information.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Cheating Detection of Test Collusion: A Study on Machine Learning Techniques and Feature Representation
    Chang, Shun-Chuan
    Chang, Keng Lun
    EDUCATIONAL MEASUREMENT-ISSUES AND PRACTICE, 2023, 42 (02) : 62 - 73
  • [32] Fall Detection Using Machine Learning Algorithms
    Vallabh, Pranesh
    Malekian, Reza
    Ye, Ning
    Bogatinoska, Dijana Capeska
    2016 24TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2016, : 51 - 59
  • [33] Machine Learning Algorithms for Traffic Interruption Detection
    Karnati, Yashaswi
    Mahajan, Dhruv
    Rangarajan, Anand
    Ranka, Sanjay
    2020 FIFTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2020, : 231 - 236
  • [34] Android Collusion Detection by means of Audio Signal Analysis with Machine Learning techniques
    Casolare, Rosangela
    Di Giacomo, Umberto
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 2340 - 2346
  • [35] VigIA: prioritizing public procurement oversight with machine learning models and risk indices
    Salazar, Andres
    Perez, Juan F.
    Gallego, Jorge
    DATA & POLICY, 2024, 6
  • [36] Machine learning algorithms for diabetes detection: a comparative evaluation of performance of algorithms
    Surabhi Saxena
    Debashish Mohapatra
    Subhransu Padhee
    Goutam Kumar Sahoo
    Evolutionary Intelligence, 2023, 16 : 587 - 603
  • [37] Fraud, corruption, and collusion in public procurement activities, a systematic literature review on data-driven methods
    Marcos S. Lyra
    Bruno Damásio
    Flávio L. Pinheiro
    Fernando Bacao
    Applied Network Science, 7
  • [38] Fraud, corruption, and collusion in public procurement activities, a systematic literature review on data-driven methods
    Lyra, Marcos S.
    Damasio, Bruno
    Pinheiro, Flavio L.
    Bacao, Fernando
    APPLIED NETWORK SCIENCE, 2022, 7 (01)
  • [39] Machine learning algorithms for diabetes detection: a comparative evaluation of performance of algorithms
    Saxena, Surabhi
    Mohapatra, Debashish
    Padhee, Subhransu
    Sahoo, Goutam Kumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (02) : 587 - 603
  • [40] Machine fault detection methods based on machine learning algorithms: A review
    Ciaburro, Giuseppe
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 11453 - 11490