On higher order generalized Bernoulli numbers

被引:3
作者
Jang, YH [1 ]
Kim, DS [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
higher order generalized Bernoulli numbers;
D O I
10.1016/S0096-3003(02)00138-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define higher order generalized Bernoulli numbers in order to give the values of a series attached to Dirichlet character at non-positive integers, and investigate the arithmetic properties of them. In particular, we obtain Euler summation formula involving higher order generalized Bernoulli numbers. Also, in the p-adic cyclotomic field, we construct Witt's type formula involving higher order generalized Bernoulli numbers. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 7 条
  • [1] [Anonymous], 1992, J KOREAN MATH SOC
  • [2] [Anonymous], 1993, ELEMENTARY THEORY L
  • [3] Barnes E., 1904, T CAMBRIDGE PHILOS S, V19, P374
  • [4] CARLITZ L, 1958, PAC J MATH, V2, P174
  • [5] Choi J, 1996, INDIAN J PURE AP MAT, V27, P667
  • [6] IWASAWA K, 1972, LECT PADIC LFUNCTION
  • [7] Whittaker E. T., 1963, Cambridge Math. Lib.