The Effect of Isolated Lignins, Obtained From a Range of Pretreated Lignocellulosic Substrates, on Enzymatic Hydrolysis

被引:225
作者
Nakagame, Seiji [1 ]
Chandra, Richard P. [1 ]
Saddler, Jack N. [1 ]
机构
[1] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioconversion; lignocellulose; softwood; lodgepole pine; hardwood; poplar; corn stover; SO2-catalyzed steam pretreatment; organosolv pretreatment; STEAM EXPLOSION; RESIDUAL LIGNINS; PORE-SIZE; SOFTWOOD; CELLULASES; INHIBITION; CELLULOSE; ETHANOL; HEMICELLULOSE; ELUCIDATION;
D O I
10.1002/bit.22626
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The influence of the residual lignin remaining in the cellulosic rich component of pretreated lignocellulosic substrates on subsequent enzymatic hydrolysis was assessed. Twelve lignin preparations were isolated by two isolation methods (protease treated lignin (PTL) and cellulolytic enzymatic lignin (CEL)) from three types of biomass (corn stover, poplar, and lodgepole pine) that had been pretreated by two processes (steam and organosolv pretreatments). Comparative analysis of the isolated lignin showed that the CEL contained lower amounts of carbohydrates and protein than did the PTL and that the isolated lignin from corn stover contained more carbohydrates than did the lignin derived from the poplar and lodgepole pine. The lower yields of acid insoluble lignin (AIL) obtained from the corn stover when using the PTL method indicated that the lignin from the corn stover had a higher hydrophilicity than did the lignin from the poplar and lodgepole pine. The isolated lignin preparations were added to the reaction mixture containing crystalline cellulose (Avicel) and their possible effects on enzymatic hydrolysis were assessed. It was apparent that the lignin isolated from lodgepole pine and steam pretreated poplar decreased the hydrolysis yields of Avicel, whereas the other isolated lignins did not appear to decrease the hydrolysis yields significantly. The hydrolysis yields of the pretreated lignocellulose and those of Avicel containing the PTL showed good correlation, indicating that the nature of the residual lignin obtained after pretreatment significantly influenced hydrolysis.
引用
收藏
页码:871 / 879
页数:9
相关论文
共 31 条
[1]  
AIMI H, 2005, STRUCTURE SMALL LIGN, P303
[2]  
[Anonymous], 2008, BIOCH PRODUCTION ETH
[3]   Weak lignin-rinding enzymes - A novel approach to improve activity of cellulases for hydrolysis of lignocellulosics [J].
Berlin, A ;
Gilkes, N ;
Kurabi, A ;
Bura, R ;
Tu, MB ;
Kilburn, D ;
Saddler, J .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2005, 121 (1-3) :163-170
[4]   Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates - evidence for the role of accessory enzymes [J].
Berlin, A ;
Gilkes, N ;
Kilburn, D ;
Bura, R ;
Markov, A ;
Skomarovsky, A ;
Okunev, O ;
Gusakov, A ;
Maximenko, V ;
Gregg, D ;
Sinitsyn, A ;
Saddler, J .
ENZYME AND MICROBIAL TECHNOLOGY, 2005, 37 (02) :175-184
[5]   Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations [J].
Berlin, Alex ;
Balakshin, Mikhail ;
Gilkes, Neil ;
Kadla, John ;
Maximenko, Vera ;
Kubo, Satoshi ;
Saddler, Jack .
JOURNAL OF BIOTECHNOLOGY, 2006, 125 (02) :198-209
[6]   An improved procedure for isolation of residual lignins from hardwood kraft pulps [J].
Capanema, EA ;
Balakshin, MY ;
Chen, CL .
HOLZFORSCHUNG, 2004, 58 (05) :464-472
[7]   Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? [J].
Chandra, R. P. ;
Bura, R. ;
Mabee, W. E. ;
Berlin, A. ;
Pan, X. ;
Saddler, J. N. .
BIOFUELS, 2007, 108 :67-93
[8]   COMPARATIVE STUDIES ON CELLULOLYTIC ENZYME LIGNIN AND MILLED WOOD LIGNIN OF SWEETGUM AND SPRUCE [J].
CHANG, HM ;
COWLING, EB ;
BROWN, W ;
ADLER, E ;
MIKSCHE, G .
HOLZFORSCHUNG, 1975, 29 (05) :153-159
[9]   Eucalyptus globulus kraft pulp residual lignins part 1.: Effects of extraction methods upon lignin structure [J].
Duarte, AP ;
Robert, D ;
Lachenal, D .
HOLZFORSCHUNG, 2000, 54 (04) :365-372
[10]   Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose [J].
Eriksson, T ;
Börjesson, J ;
Tjerneld, F .
ENZYME AND MICROBIAL TECHNOLOGY, 2002, 31 (03) :353-364