Synchronization criteria of Lur'e systems with time-delay feedback control

被引:207
作者
Cao, JD [1 ]
Li, HX
Ho, DWC
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Cent S Univ, Shanghai, Peoples R China
[3] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1016/j.chaos.2004.06.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper time-delay effects on the master-slave synchronization scheme are studied by a time-delay feedback control technique. Several new delay-independent and delay-dependent sufficient conditions are presented for master-slave synchronization of Lur'e systems based upon Lyapunov method and linear matrix inequalities (LMI's) approaches. These new synchronization criteria are easily verifiable and offer some fairly adjustable real parameters, which are of important significance in the design and applications of such chaos synchronization systems, and the proposed results improve and generalize the earlier works. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1285 / 1298
页数:14
相关论文
共 25 条
  • [1] Boy S., 1994, Linear MatrixInequalities in System and Control Theory
  • [2] A unifying definition of synchronization for dynamical systems
    Brown, R
    Kocarev, L
    [J]. CHAOS, 2000, 10 (02) : 344 - 349
  • [3] Chen G., 1998, CHAOS ORDER PERSPECT
  • [4] Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation
    Chen, HF
    Liu, JM
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (01) : 27 - 34
  • [5] Absolute stability theory and the synchronization problem
    Curran, PF
    Chua, LO
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (06): : 1375 - 1382
  • [6] Absolute stability theory and master-slave synchronization
    Curran, PF
    Suykens, JAK
    Chua, LO
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2891 - 2896
  • [7] Fiedler M., 1986, SPECIAL MATRICES THE
  • [8] Gu K., 2003, CONTROL ENGN SER BIR, DOI 10.1007/978-1-4612-0039-0
  • [9] Hale J.K., 1993, Introduction to Functional Differential Equations, DOI DOI 10.1007/978-1-4612-4342-7
  • [10] Simple example of partial synchronization of chaotic systems
    Hasler, M
    Maistrenko, Y
    Popovych, O
    [J]. PHYSICAL REVIEW E, 1998, 58 (05): : 6843 - 6846