Performance enhancement of powertrain DC-DC converter using variable inductor

被引:1
作者
Beraki, Mebrahtom W. [1 ]
Trovao, Joao Pedro F. [1 ,2 ,3 ]
Perdigao, Marina S. [3 ,4 ]
机构
[1] Univ Sherbrooke, Dept Elect & Comp Engn, E TESC Lab, Sherbrooke, PQ, Canada
[2] Univ Coimbra, DEEC, INESC Coimbra, Coimbra, Portugal
[3] Univ Coimbra, DEEC, Inst Telecomun, Coimbra, Portugal
[4] Polytech Inst Coimbra, DEE, IPC, ISEC, Coimbra, Portugal
基金
加拿大自然科学与工程研究理事会;
关键词
SYSTEM; ENERGY;
D O I
10.1049/els2.12014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Performance enhancement of a powertrain DC-DC converter is provided using a current-controlled magnetic device, the variable inductor (VI). The VI is composed of two groups of windings, main and auxiliary. The auxiliary winding is used to regulate the permeability of the magnetic core over a wide range of load variations. To regulate the saturation level of the magnetic core and avoid postsaturation operation of the power inductor, an appropriate level of auxiliary winding current is needed. To this end, a simple and dynamic strategy is proposed to estimate the auxiliary winding currents of the VI. The proposed approach is validated using simulation studies of a large-scale VI-based powertrain DC-DC converter. The results reveal the significance of the proposed approach in continuous regulation of the magnetic property of the power inductor core, enhancing powertrain DC-DC converter performance by up to 13.70% and reducing stress on switching devices by 17.87%. Furthermore, energy source current variation is reduced by 6.73%, leading to reduced stress on energy storage systems.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 22 条
[1]  
Ahsanuzzaman SM, 2012, APPL POWER ELECT CO, P335, DOI 10.1109/APEC.2012.6165840
[2]   An Improved Empirical Formulation for Magnetic Core Losses Estimation Under Nonsinusoidal Induction [J].
Barg, Sobhi ;
Ammous, Kaicar ;
Mejbri, Hanen ;
Ammous, Anis .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (03) :2146-2154
[3]  
Beraki M., 2019, P 2019 IEEE 28 INT S, P822
[4]   Comprehensive comparison and selection of magnetic materials for powertrain DC-DC converters [J].
Beraki, Mebrahtom ;
Trovao, Joao P. ;
Perdigao, Marina .
IET ELECTRICAL SYSTEMS IN TRANSPORTATION, 2020, 10 (02) :125-134
[5]   Characterization of variable inductors using finite element analysis [J].
Beraki, Mebrahtom ;
Trovao, Joao P. ;
Perdigao, Marina .
SIMULATION MODELLING PRACTICE AND THEORY, 2019, 97
[6]   Variable Inductor Based Bidirectional DC-DC Converter for Electric Vehicles [J].
Beraki, Mebrahtom Woldelibanos ;
Trovao, Joao Pedro F. ;
Perdigao, Marina S. ;
Dubois, Maxime R. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8764-8772
[7]   Electrified Automotive Powertrain Architecture Using Composite DC-DC Converters [J].
Chen, Hua ;
Kim, Hyeokjin ;
Erickson, Robert ;
Maksimovic, Dragan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (01) :98-116
[8]   Permanent-Magnet Coupled Power Inductor for Multiphase DC-DC Power Converters [J].
Dang, Zhigang ;
Abu Qahouq, Jaber A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (03) :1971-1981
[9]   Evaluation of High-Current Toroid Power Inductor With NdFeB Magnet for DC-DC Power Converters [J].
Dang, Zhigang ;
Abu Qahouq, Jaber A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (11) :6868-6876
[10]  
Erickson R. W., 2007, FUNDAMENTALS POWER E