An optimal control problem for mosaic disease via Caputo fractional derivative

被引:41
|
作者
Vellappandi, M. [1 ]
Kumar, Pushpendra [1 ]
Govindaraj, V [1 ]
Albalawi, Wedad [2 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Fractional optimal control; Forward-Backward sweep method; Caputo fractional derivative; Mathematical model; Graphical simulations; VIRUS DISEASE; MODEL; EPIDEMIOLOGY; DYNAMICS;
D O I
10.1016/j.aej.2022.01.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this research article, we derive an optimal control problem for the mosaic disease model by using the Caputo fractional derivatives. The natural microbial biostimulants (MBs) are very useful to improve the plant performance and protect plants from mosaic infection. In the proposed model, we apply two extra optimal controls; spraying and roguing to investigate their roles in the control of mosaic spread. We perform a number of experimental results by using the algorithm of forward-backward sweep method at various fractional order values. The main goal of this article is to explore the role of spraying and roguing in the aforementioned availability of MBs. From our study, we notice that in the presence of MBs, only roguing is the effective control which can be used to stop the spread of mosaic. (C) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:8027 / 8037
页数:11
相关论文
共 50 条
  • [21] FRACTIONAL DYNAMICS OF CORONAVIRUS WITH COMORBIDITY VIA CAPUTO-FABRIZIO DERIVATIVE
    Bonyah, E.
    Juga, M.
    Fatmawati
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [23] Fractional investigation of bank data with fractal-fractional Caputo derivative
    Li, Zhongfei
    Liu, Zhuang
    Khan, Muhammad Altaf
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [24] Investigation of fractional order tuberculosis (TB) model via Caputo derivative
    Ullah, Ihsan
    Ahmad, Saeed
    Rahman, Mati Ur
    Arfan, Muhammad
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [25] Fractional Order Mathematical Modelling of HFMD Transmission via Caputo Derivative
    Mohandoss, Aakash
    Chandrasekar, Gunasundari
    Meetei, Mutum Zico
    Msmali, Ahmed H.
    AXIOMS, 2024, 13 (04)
  • [26] Analog of the Darboux problem for a loaded integro-differential equation involving the Caputo fractional derivative
    Baltaeva, U.
    Alikulov, Y.
    Baltaeva, I. I.
    Ashirova, A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2021, 12 (04): : 418 - 424
  • [27] Unexpected behavior of Caputo fractional derivative
    Lucas Kenjy Bazaglia Kuroda
    Arianne Vellasco Gomes
    Robinson Tavoni
    Paulo Fernando de Arruda Mancera
    Najla Varalta
    Rubens de Figueiredo Camargo
    Computational and Applied Mathematics, 2017, 36 : 1173 - 1183
  • [28] On a Caputo-type fractional derivative
    Oliveira, Daniela S.
    de Oliveira, Edmundo Capelas
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 81 - 91
  • [29] Caputo fractional derivative of α-fractal spline
    Priyanka, T. M. C.
    Gowrisankar, A.
    Prasad, M. Guru Prem
    Liang, Yongshun
    Cao, Jinde
    NUMERICAL ALGORITHMS, 2024, : 207 - 228
  • [30] Unexpected behavior of Caputo fractional derivative
    Bazaglia Kuroda, Lucas Kenjy
    Gomes, Arianne Vellasco
    Tavoni, Robinson
    de Arruda Mancera, Paulo Fernando
    Varalta, Najla
    Camargo, Rubens de Figueiredo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03) : 1173 - 1183