Refined Jacobian estimates for Ginzburg-Landau functionals

被引:24
作者
Jerrard, Robert [1 ]
Spirn, Daniel
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Ginzburg-Landau functional; Jacobian; gamma convergence;
D O I
10.1512/iumj.2007.56.2815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove various estimates that relate the Ginzburg-Landau energy E epsilon (u) = integral(Omega)vertical bar del u vertical bar(2)/2 + (vertical bar u vertical bar(2) - 1)(2)/(4 epsilon(2)) dx of a function u is an element of H-1 (Q; R-2), Omega subset of R-2, to the distance in the W--1,W-1 norm between the Jacobian J(u) = det del u and a sum of point masses. These are interpreted as quantifying the precision with which "vortices" in a function u can be located via measure-theoretic tools such as the Jacobian; and the extent to which variations in the Ginzburg-Landau energy due to translation of vortices can be detected using the Jacobian. We give examples to show that some of our estimates are close to optimal.
引用
收藏
页码:135 / 186
页数:52
相关论文
共 50 条
[31]   THE GINZBURG-LANDAU ORDER PARAMETER NEAR THE SECOND CRITICAL FIELD [J].
Kachmar, Ayman .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :572-587
[32]   From Ginzburg-Landau to Hilbert-Einstein via Yamabe [J].
Kholodenko, Arkady L. ;
Ballard, Ethan E. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 380 :115-162
[33]   HOMOGENIZED DESCRIPTION OF MULTIPLE GINZBURG-LANDAU VORTICES PINNED BY SMALL HOLES [J].
Berlyand, Leonid ;
Rybalko, Volodymyr .
NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (01) :115-130
[34]   Critical points of the Ginzburg-Landau functional on multiply-connected domains [J].
Neuberger, JW ;
Renka, RJ .
EXPERIMENTAL MATHEMATICS, 2000, 9 (04) :523-533
[35]   MOTION OF VORTICES FOR THE EXTRINSIC GINZBURG-LANDAU FLOW FOR VECTOR FIELDS ON SURFACES [J].
Canevari, Giacomo ;
Segatti, Antonio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08) :2087-2116
[36]   LIPSCHITZ CONTINUITY OF MINIMIZERS FOR THE GINZBURG-LANDAU FUNCTIONAL BETWEEN ALEXANDROV SPACES [J].
Jia-Cheng Huang ;
Hui-Chun Zhang .
AnnalsofAppliedMathematics, 2019, 35 (03) :266-308
[37]   Asymptotic behavior of regularizable minimizers of a Ginzburg-Landau functional in higher dimensions [J].
Lei, Yutian .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
[38]   A Ginzburg-Landau Type Energy with Weight and with Convex Potential Near Zero [J].
Hadiji, Rejeb ;
Perugia, Carmen .
MATHEMATICS, 2020, 8 (06)
[39]   Topological Singularities in Periodic Media: Ginzburg-Landau and Core-Radius Approaches [J].
Alicandro, Roberto ;
Braides, Andrea ;
Cicalese, Marco ;
De Luca, Lucia ;
Piatnitski, Andrey .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (02) :559-609
[40]   LOCAL MINIMIZERS WITH VORTEX PINNING FOR A GINZBURG-LANDAU FUNCTIONAL FOR SUPERCONDUCTING HOLLOW SPHERES [J].
Zhai, Jian ;
Xue, Shuai .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (01)