Newman's identity and infinite families of congruences modulo 7 for broken 3-diamond partitions

被引:7
作者
Yao, Olivia X. M. [1 ]
Wang, Ya Juan [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Broken k-diamond partition; Congruence; Theta function; Newman's identity; (p; k)-parametrization of theta function; K-DIAMOND PARTITIONS; ANDREWS; PARITY; FORMS;
D O I
10.1007/s11139-016-9801-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2007, Andrews and Paule introduced the notion of broken k-diamond partitions. Let Delta(k)(n) denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, Paule and Radu presented some conjectures on congruences modulo 7 for Delta(3)(n) which were proved by Jameson and Xiong based on the theory of modular forms. Very recently, Xia proved several infinite families of congruences modulo 7 for Delta(3)(n) using theta function identities. In this paper, many new infinite families of congruences modulo 7 for Delta(3)(n) are derived based on an identity of Newman and the (p; k)-parametrization of theta functions due to Alaca, Alaca and Williams. In particular, some non-standard congruences modulo 7 for Delta(3)(n) are deduced. For example, we prove that for alpha >= 0, Delta(3) (14x757(alpha)+1/3) equivalent to 6 - alpha (mod 7).
引用
收藏
页码:619 / 631
页数:13
相关论文
共 27 条
[11]   Congruences modulo 4 for broken k-diamond partitions [J].
Xia, Ernest X. W. .
RAMANUJAN JOURNAL, 2018, 45 (02) :331-348
[12]   Congruences modulo 4 for broken k-diamond partitions [J].
Ernest X. W. Xia .
The Ramanujan Journal, 2018, 45 :331-348
[13]   Congruences modulo 11 for broken 5-diamond partitions [J].
Eric H. Liu ;
James A. Sellers ;
Ernest X. W. Xia .
The Ramanujan Journal, 2018, 46 :151-159
[14]   Ramanujan-type congruences for broken 2-diamond partitions modulo 3 [J].
Chen, William Y. C. ;
Fan, Anna R. B. ;
Yu, Rebecca T. .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) :1553-1560
[15]   Elementary proofs of parity results for broken 3-diamond partitions [J].
Lin, Bernard L. S. .
JOURNAL OF NUMBER THEORY, 2014, 135 :1-7
[16]   Ramanujan-type congruences for broken 2-diamond partitions modulo 3 [J].
CHEN William YC ;
FAN Anna RB ;
YU Rebecca T .
Science China(Mathematics), 2014, 57 (08) :1553-1560
[17]   An extensive analysis of the parity of broken 3-diamond partitions [J].
Radu, Silviu ;
Sellers, James A. .
JOURNAL OF NUMBER THEORY, 2013, 133 (11) :3703-3716
[18]   Some congruences modulo 3, 5 and 7 for broken ((rl-1)/2)-diamond partitions for r ∈ {3,25,49} and odd positive integer l [J].
Saikia, Nipen ;
Chetry, Jubaraj .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) :645-655
[19]   Infinite families of congruences modulo 4 for 16-regular partitions [J].
Cao, Shiwei ;
Jin, Jing ;
Yao, Olivia X. M. ;
Zhou, Xinyuan .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2025, 68 (02) :219-229
[20]   Infinite families of congruences modulo 9 for 9-regular partitions [J].
Chen, Na ;
Li, Xiaorong ;
Yao, Olivia X. M. .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02) :163-172