Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond

被引:17
作者
Xing, Jian [1 ,2 ]
Zhang, Yu-Ran [1 ,2 ]
Liu, Shang [3 ]
Chang, Yan-Chun [1 ,2 ]
Yue, Jie-Dong [1 ,2 ]
Fan, Heng [1 ,2 ,4 ]
Pan, Xin-Yu [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[3] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
NUCLEAR-SPIN QUBITS; PRINCIPLE; ENTANGLEMENT; MEMORY;
D O I
10.1038/s41598-017-02424-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One unique feature of quantum mechanics is the Heisenberg uncertainty principle, which states that the outcomes of two incompatible measurements cannot simultaneously achieve arbitrary precision. In an information-theoretic context of quantum information, the uncertainty principle can be formulated as entropic uncertainty relations with two measurements for a quantum bit (qubit) in two-dimensional system. New entropic uncertainty relations are studied for a higher-dimensional quantum state with multiple measurements, and the uncertainty bounds can be tighter than that expected from two measurements settings and cannot result from qubits system with or without a quantum memory. Here we report the first room-temperature experimental testing of the entropic uncertainty relations with three measurements in a natural three-dimensional solid-state system: the nitrogen-vacancy center in pure diamond. The experimental results confirm the entropic uncertainty relations for multiple measurements. Our result represents a more precise demonstrating of the fundamental uncertainty principle of quantum mechanics.
引用
收藏
页数:9
相关论文
共 40 条
[1]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[2]   Room-temperature quantum cloning machine with full coherent phase control in nanodiamond [J].
Chang Y.-C. ;
Liu G.-Q. ;
Liu D.-Q. ;
Fan H. ;
Pan X.-Y. .
Scientific Reports, 3 (1)
[3]   Coherent dynamics of coupled electron and nuclear spin qubits in diamond [J].
Childress, L. ;
Dutt, M. V. Gurudev ;
Taylor, J. M. ;
Zibrov, A. S. ;
Jelezko, F. ;
Wrachtrup, J. ;
Hemmer, P. R. ;
Lukin, M. D. .
SCIENCE, 2006, 314 (5797) :281-285
[4]   Uncertainty Relations from Simple Entropic Properties [J].
Coles, Patrick J. ;
Colbeck, Roger ;
Yu, Li ;
Zwolak, Michael .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[5]   Entropic uncertainty relations under the relativistic motion [J].
Feng, Jun ;
Zhang, Yao-Zhong ;
Gould, Mark D. ;
Fan, Heng .
PHYSICS LETTERS B, 2013, 726 (1-3) :527-532
[6]   Universal Uncertainty Relations [J].
Friedland, Shmuel ;
Gheorghiu, Vlad ;
Gour, Gilad .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)
[7]   Scanning confocal optical microscopy and magnetic resonance on single defect centers [J].
Gruber, A ;
Drabenstedt, A ;
Tietz, C ;
Fleury, L ;
Wrachtrup, J ;
vonBorczyskowski, C .
SCIENCE, 1997, 276 (5321) :2012-2014
[8]   Characterizing entanglement via uncertainty relations -: art. no. 117903 [J].
Gühne, O .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :117903-1
[9]   Quantum register based on individual electronic and nuclear spin qubits in diamond [J].
Gurudev Dutt, M. V. ;
Childress, L. ;
Jiang, L. ;
Togan, E. ;
Maze, J. ;
Jelezko, F. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
SCIENCE, 2007, 316 (5829) :1312-1316
[10]   A violation of the uncertainty principle implies a violation of the second law of thermodynamics [J].
Haenggi, Esther ;
Wehner, Stephanie .
NATURE COMMUNICATIONS, 2013, 4