Convergence analysis of a finite volume method for Maxwell's equations in nonhomogeneous media

被引:41
|
作者
Chung, ET [1 ]
Du, Q
Zou, J
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
finite volume method; Maxwell's equations; inhomogeneous medium; stability; convergence;
D O I
10.1137/S0036142901398453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a recently developed finite volume method for the time-dependent Maxwell's equations in a three-dimensional polyhedral domain composed of two dielectric materials with different parameter values for the electric permittivity and the magnetic permeability. Convergence and error estimates of the numerical scheme are established for general nonuniform tetrahedral triangulations of the physical domain. In the case of nonuniform rectangular grids, the scheme converges with second order accuracy in the discrete L-2-norm, despite the low regularity of the true solution over the entire domain. In particular, the finite volume method is shown to be superconvergent in the discrete H(curl; Omega)-norm. In addition, the explicit dependence of the error estimates on the material parameters is given.
引用
收藏
页码:37 / 63
页数:27
相关论文
共 50 条
  • [41] Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials
    Li, Jichun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) : 3161 - 3172
  • [42] Bicompact Finite-Difference Scheme for Maxwell’s Equations in Layered Media
    A. A. Belov
    Zh. O. Dombrovskaya
    Doklady Mathematics, 2020, 101 : 185 - 188
  • [43] An Adaptive Time Step FDTD Method for Maxwell's Equations
    Shi, Rengang
    Yang, Haitian
    Gao, Liping
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 1706 - 1709
  • [44] On the convergence of a finite volume method for the Navier-Stokes-Fourier system
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    Mizerova, Hana
    She, Bangwei
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2388 - 2422
  • [45] AN ADAPTIVE EDGE FINITE ELEMENT METHOD FOR THE MAXWELL'S EQUATIONS IN METAMATERIALS
    Wang, Hao
    Yang, Wei
    Huang, Yunqing
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 961 - 976
  • [46] ADAPTIVE HYBRID FINITE ELEMENT/DIFFERENCE METHOD FOR MAXWELL'S EQUATIONS
    Beilina, Larisa
    Grote, Marcus J.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (02): : 176 - 197
  • [47] Stability and Convergence Analysis of a Domain Decomposition FE/FD Method for Maxwell's Equations in the Time Domain
    Asadzadeh, Mohammad
    Beilina, Larisa
    ALGORITHMS, 2022, 15 (10)
  • [48] Convergence analysis of a finite volume method via a new nonconforming finite element method
    Vanselow, R
    Scheffler, HP
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1998, 14 (02) : 213 - 231
  • [49] Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations
    Bao, G
    Wu, HJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 2121 - 2143
  • [50] Numerical analysis of a leapfrog ADI-FDTD method for Maxwell's equations in lossy media
    Huang, Yunqing
    Chen, Meng
    Li, Jichun
    Lin, Yanping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 938 - 956