Novel reporter mouse models useful for evaluating in vivo gene editing and for optimization of methods of delivering genome editing tools

被引:8
作者
Miura, Hiromi [1 ,2 ]
Imafuku, Jurai [1 ]
Kurosaki, Aki [1 ]
Sato, Masahiro [3 ]
Ma, Yongjie [4 ]
Zhang, Guisheng [4 ]
Mizutani, Akiko [5 ]
Kamimura, Kenya [6 ,7 ]
Gurumurthy, Channabasavaiah B. [8 ,9 ]
Liu, Dexi [4 ]
Ohtsuka, Masato [1 ,2 ,4 ]
机构
[1] Tokai Univ, Dept Mol Life Sci, Div Basic Med Sci & Mol Med, Sch Med, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan
[2] Tokai Univ, Ctr Matrix Biol & Med, Grad Sch Med, Hiratsuka, Kanagawa, Japan
[3] Kagoshima Univ, Frontier Sci Res Ctr, Sect Gene Express Regulat, Kagoshima, Japan
[4] Univ Georgia, Coll Pharm, Dept Pharmaceut & Biomed Sci, Athens, GA 30602 USA
[5] Teikyo Heisei Univ, Fac Hlth & Med Sci, Tokyo, Japan
[6] Niigata Univ, Grad Sch Med & Dent Sci, Div Gastroenterol & Hepatol, Niigata, Japan
[7] Niigata Univ, Dept Gen Med, Sch Med, Niigata, Japan
[8] Univ Nebraska Med Ctr, Mouse Genome Engn Core Facil, Omaha, NE USA
[9] Univ Nebraska Med Ctr, Coll Med, Dept Pharmacol & Expt Neurosci, Omaha, NE USA
来源
MOLECULAR THERAPY-NUCLEIC ACIDS | 2021年 / 24卷
基金
日本学术振兴会;
关键词
RESTORES DYSTROPHIN EXPRESSION; HOMOLOGY-DIRECTED REPAIR; DNA; CRISPR-CAS9; SYSTEM;
D O I
10.1016/j.omtn.2021.03.003
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The clustered regularly interspersed palindromic repeats (CRISPR) system is a powerful genome-editing tool to modify genomes, virtually in any species. The CRISPR tool has now been utilized in many areas of medical research, including gene therapy. Although several proof-of-concept studies show the feasibility of in vivo gene therapy applications for correcting disease-causing mutations, and new and improved tools are constantly being developed, there are not many choices of suitable reporter models to evaluate genome editor tools and their delivery methods. Here, we developed and validated reporter mouse models containing a single copy of disrupted EGFP (DEGFP) via frameshift mutations. We tested several delivery methods for validation of the reporters, and we demonstrated their utility to assess both non-homologous end-joining (NHEJ) and via homology-directed repair (HDR) processes in embryos and in somatic tissues. With the use of the reporters, we also show that hydrodynamic delivery of ribonucleoprotein (RNP) with Streptococcus pyogenes (Sp)Cas9 protein mixed with synthetic guide RNA (gRNA) elicits better genome-editing efficiencies than the plasmid vector-based system in mouse liver. The reporters can also be used for assessing HDR efficiencies of the Acidaminococcus sp. (As)Cas12a nuclease. The results suggest that the DEGFP mouse models serve as valuable tools for evaluation of in vivo genome editing.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 35 条
[1]   Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template [J].
Aird, Eric J. ;
Lovendahl, Klaus N. ;
St Martin, Amber ;
Harris, Reuben S. ;
Gordon, Wendy R. .
COMMUNICATIONS BIOLOGY, 2018, 1
[2]   Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency [J].
Canny, Marella D. ;
Moatti, Nathalie ;
Wan, Leo C. K. ;
Fradet-Turcotte, Amelie ;
Krasner, Danielle ;
Mateos-Gomez, Pedro A. ;
Zimmermann, Michal ;
Orthwein, Alexandre ;
Juang, Yu-Chi ;
Zhang, Wei ;
Noordermeer, Sylvie M. ;
Seclen, Eduardo ;
Wilson, Marcus D. ;
Vorobyov, Andrew ;
Munro, Meagan ;
Ernst, Andreas ;
Timothy F Ng ;
Cho, Tiffany ;
Cannon, Paula M. ;
Sidhu, Sachdev S. ;
Sicheri, Frank ;
Durocher, Daniel .
NATURE BIOTECHNOLOGY, 2018, 36 (01) :95-+
[3]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[4]   Therapeutic genome editing: prospects and challenges [J].
Cox, David Benjamin Turitz ;
Platt, Randall Jeffrey ;
Zhang, Feng .
NATURE MEDICINE, 2015, 21 (02) :121-131
[5]   In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice [J].
El Refaey, Mona ;
Xu, Li ;
Gao, Yandi ;
Canan, Benjamin D. ;
Adesanya, T. M. Ayodele ;
Warner, Sarah C. ;
Akagi, Keiko ;
Symer, David E. ;
Mohler, Peter J. ;
Ma, Jianjie ;
Janssen, Paul M. L. ;
Han, Renzhi .
CIRCULATION RESEARCH, 2017, 121 (08) :923-+
[6]   A history of genome editing in mammals [J].
Fernandez, Almudena ;
Josa, Santiago ;
Montoliu, Lluis .
MAMMALIAN GENOME, 2017, 28 (7-8) :237-246
[7]   Development and Applications of CRISPR-Cas9 for Genome Engineering [J].
Hsu, Patrick D. ;
Lander, Eric S. ;
Zhang, Feng .
CELL, 2014, 157 (06) :1262-1278
[8]   Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids [J].
Hu, Huili ;
Gehart, Helmuth ;
Artegiani, Benedetta ;
Lopez-Iglesias, Carmen ;
Dekkers, Florijn ;
Basak, Onur ;
van Es, Johan ;
Lopes, Susana M. Chuva de Sousa ;
Begthel, Harry ;
Korving, Jeroen ;
van den Born, Maaike ;
Zou, Chenhui ;
Quirk, Corrine ;
Chiriboga, Luis ;
Rice, Charles M. ;
Ma, Stephanie ;
Rios, Anne ;
Peters, Peter J. ;
de Jong, Ype P. ;
Clevers, Hans .
CELL, 2018, 175 (06) :1591-+
[9]   Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes [J].
Jacobi, Ashley M. ;
Rettig, Garrett R. ;
Turk, Rolf ;
Collingwood, Michael A. ;
Zeiner, Sarah A. ;
Quadros, Rolen M. ;
Harms, Donald W. ;
Bonthuis, Paul J. ;
Gregg, Christopher ;
Ohtsuka, Masato ;
Gurumurthy, Channabasavaiah B. ;
Behlke, Mark A. .
METHODS, 2017, 121 :16-28
[10]   Precise and efficient scarless genome editing in stem cells using CORRECT [J].
Kwart, Dylan ;
Paquet, Dominik ;
Teo, Shaun ;
Tessier-Lavigne, Marc .
NATURE PROTOCOLS, 2017, 12 (02) :329-354