Limits to Metallic Conduction in Atomic-Scale Quasi-One-Dimensional Silicon Wires

被引:23
作者
Weber, Bent [1 ]
Ryu, Hoon [2 ]
Tan, Y. -H. Matthias [3 ]
Klimeck, Gerhard [3 ]
Simmons, Michelle Y. [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Techol, Sydney, NSW 2052, Australia
[2] KISTI, Natl Inst Supercomp & Networking, Taejon 305806, South Korea
[3] Purdue Univ, Birck Nanotechnol Ctr, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
基金
澳大利亚研究理事会;
关键词
COULOMB-BLOCKADE; ELECTRON-SPIN; QUANTUM; FLUCTUATIONS; CONFINEMENT; TRANSITION;
D O I
10.1103/PhysRevLett.113.246802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent observation of ultralow resistivity in highly doped, atomic-scale silicon wires has sparked interest in what limits conduction in these quasi-1D systems. Here we present electron transport measurements of gated Si:P wires of widths 4.6 and 1.5 nm. At 4.6 nm we find an electron mobility, mu(el) similar or equal to 60 cm(2)/V s, in excellent agreement with that of macroscopic Hall bars. Metallic conduction persists to millikelvin temperatures where we observe Gaussian conductance fluctuations of order delta G similar to e(2)/h. In thinner wires (1.5 nm), metallic conduction breaks down at G less than or similar to e(2)/h, where localization of carriers leads to Coulomb blockade. Metallic behavior is explained by the large carrier densities in Si:P delta-doped systems, allowing the occupation of all six valleys of the silicon conduction band, enhancing the number of 1D channels and hence the localization length.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Enhanced optoelectronic performance and photogating effect in quasi-one-dimensional BiSeI wires
    Hu, H. J.
    Zhen, W. L.
    Weng, S. R.
    Li, Y. D.
    Niu, R.
    Yue, Z. L.
    Xu, F.
    Pi, L.
    Zhang, C. J.
    Zhu, W. K.
    APPLIED PHYSICS LETTERS, 2022, 120 (20)
  • [2] Nonreciprocal Coulomb drag between quantum wires in the quasi-one-dimensional regime
    Makaju, R.
    Kassar, H.
    Daloglu, S. M.
    Huynh, A.
    Laroche, D.
    Levchenko, A.
    Addamane, S. J.
    PHYSICAL REVIEW B, 2024, 109 (08)
  • [3] Size effects in electrical and magnetic properties of quasi-one-dimensional tin wires in asbestos
    Chernyaev, A. V.
    Shamshur, D. V.
    Fokin, A. V.
    Kalmykov, A. E.
    Kumzerov, Yu. A.
    Sorokin, L. M.
    Parfen'ev, R. V.
    Lashkul, A.
    PHYSICS OF THE SOLID STATE, 2016, 58 (03) : 454 - 461
  • [4] Separation-induced resonances in quasi-one-dimensional ultracold atomic gases
    Fu, Wenbo
    Yu, Zhenhua
    Cui, Xiaoling
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [5] Quasi-one-dimensional thermal breakage
    Nisoli, Cristiano
    Abraham, Douglas
    Lookman, Turab
    Saxena, Avadh
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [6] Thermalization of Interacting Quasi-One-Dimensional Systems
    Panfil, Milosz
    Gopalakrishnan, Sarang
    Konik, Robert M.
    PHYSICAL REVIEW LETTERS, 2023, 130 (03)
  • [7] Multiple mobile excitons manifested as sidebands in quasi-one-dimensional metallic TaSe3
    Ma, Junzhang
    Nie, Simin
    Gui, Xin
    Naamneh, Muntaser
    Jandke, Jasmin
    Xi, Chuanying
    Zhang, Jinglei
    Shang, Tian
    Xiong, Yimin
    Kapon, Itzik
    Kumar, Neeraj
    Soh, Yona
    Gosalbez-Martinez, Daniel
    Yazyev, Oleg, V
    Fan, Wenhui
    Huebener, Hannes
    De Giovannini, Umberto
    Plumb, Nicholas Clark
    Radovic, Milan
    Sentef, Michael Andreas
    Xie, Weiwei
    Wang, Zhijun
    Mudry, Christopher
    Mueller, Markus
    Shi, Ming
    NATURE MATERIALS, 2022, 21 (04) : 423 - +
  • [9] Atomic-scale redistribution of dopants in polycrystalline silicon layers
    Duguay, S.
    Colin, A.
    Mathiot, D.
    Morin, P.
    Blavette, D.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (03)
  • [10] A disorder-enhanced quasi-one-dimensional superconductor
    Petrovic, A. P.
    Ansermet, D.
    Chernyshov, D.
    Hoesch, M.
    Salloum, D.
    Gougeon, P.
    Potel, M.
    Boeri, L.
    Panagopoulos, C.
    NATURE COMMUNICATIONS, 2016, 7