Convergence Analysis of a Finite Volume Gradient Scheme for a Linear Parabolic Equation Using Characteristic Methods

被引:0
作者
Benkhaldoun, Fayssal [1 ,2 ]
Bradji, Abdallah [3 ]
机构
[1] Univ Paris 13, LAGA, Paris, France
[2] UM6P, Ben Guerir, Morocco
[3] Univ Annaba, Fac Sci, LMA Lab Math Appl, Annaba, Algeria
来源
LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019) | 2020年 / 11958卷
关键词
Finite volume; Parabolic equations; Characteristics method;
D O I
10.1007/978-3-030-41032-2_65
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The first aim of this work is to establish a finite volume scheme using the Characteristic method for non-stationary advection-diffusion equations. The second aim is to analyze the convergence order of this scheme. The finite volume method considered here has been developed recently in [3] to approximate heterogeneous and anisotropic diffusion problems using a general class of nonconforming meshes. The formulation of schemes using the finite volume method of [3] can be obtained by replacing the gradient of the exact solution by a stable and consistent discrete gradient. This work is a continuation of the previous ones [1,2] in which we derived directly a finite volume scheme for the heat equation along with a convergence analysis.
引用
收藏
页码:566 / 575
页数:10
相关论文
共 4 条
[1]  
Bartels S, 2016, TEXTS APPL MATH, V64, P1, DOI 10.1007/978-3-319-32354-1
[2]   Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes [J].
Bradji, Abdallah ;
Fuhrmann, Jurgen .
APPLICATIONS OF MATHEMATICS, 2013, 58 (01) :1-38
[3]   Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids [J].
Bradji, Abdallah ;
Fuhrmann, Jurgen .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (19-20) :1119-1122
[4]   Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces [J].
Eymard, R. ;
Gallouet, T. ;
Herbin, R. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) :1009-1043