Leavitt path algebras satisfying a polynomial identity

被引:1
作者
Bell, Jason P. [1 ]
Lenagan, T. H. [2 ]
Rangaswamy, Kulumani M. [3 ]
机构
[1] Univ Waterloo, Dept Pure Math, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Edinburgh, Sch Math, Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FDZ, Midlothian, Scotland
[3] Univ Colorado, Colorado Springs, CO 80918 USA
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Leavitt path algebra; polynomial identity; Gelfand-Kirillov dimension; ARBITRARY GRAPHS;
D O I
10.1142/S0219498816500845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Leavitt path algebras L of an arbitrary graph E over a field K satisfying a polynomial identity are completely characterized both in graph-theoretic and algebraic terms. When E is a finite graph, L satisfying a polynomial identity is shown to be equivalent to the Gelfand-Kirillov dimension of L being at most one, though this is no longer true for infinite graphs. It is shown that, for an arbitrary graph E, the Leavitt path algebra L has Gelfand-Kirillov dimension zero if and only if E has no cycles. Likewise, L has Gelfand-Kirillov dimension one if and only if E contains at least one cycle, but no cycle in E has an exit.
引用
收藏
页数:13
相关论文
共 16 条
  • [1] Finite-dimensional leavitt path algebras
    Abrams, G.
    Aranda Pino, G.
    Siles Molina, M.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 753 - 762
  • [2] The Leavitt path algebra of a graph
    Abrams, G
    Pino, GA
    [J]. JOURNAL OF ALGEBRA, 2005, 293 (02) : 319 - 334
  • [3] ON PRIME NONPRIMITIVE VON NEUMANN REGULAR ALGEBRAS
    Abrams, Gene
    Bell, Jason P.
    Rangaswamy, Kulumani M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) : 2375 - 2392
  • [4] Chain conditions for Leavitt path algebras
    Abrams, Gene
    Aranda Pino, Gonzalo
    Perera, Francesc
    Siles Molina, Mercedes
    [J]. FORUM MATHEMATICUM, 2010, 22 (01) : 95 - 114
  • [5] TWO-SIDED CHAIN CONDITIONS IN LEAVITT PATH ALGEBRAS OVER ARBITRARY GRAPHS
    Abrams, Gene
    Bell, Jason P.
    Colak, Pinar
    Rangaswamy, Kulumani M.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (03)
  • [6] Regularity Conditions for Arbitrary Leavitt Path Algebras
    Abrams, Gene
    Rangaswamy, Kulumani M.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (03) : 319 - 334
  • [7] LEAVITT PATH ALGEBRAS OF FINITE GELFAND-KIRILLOV DIMENSION
    Alahmadi, Adel
    Alsulami, Hamed
    Jain, S. K.
    Zelmanov, Efim
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (06)
  • [8] Structure of Leavitt path algebras of polynomial growth
    Alahmedi, Adel
    Alsulami, Hamed
    Jain, Surender
    Zelmanov, Efim I.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (38) : 15222 - 15224
  • [9] Nonstable K-theory for graph algebras
    Ara, P.
    Moreno, M. A.
    Pardo, E.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) : 157 - 178
  • [10] Pino GA, 2010, REV MAT IBEROAM, V26, P611