Determination of SLR station coordinates based on LEO, LARES, LAGEOS, and Galileo satellites

被引:12
作者
Strugarek, Dariusz [1 ]
Sosnica, Krzysztof [1 ]
Arnold, Daniel [2 ]
Jaggi, Adrian [2 ]
Zajdel, Radoslaw [1 ]
Bury, Grzegorz [1 ]
机构
[1] Wroclaw Univ Environm & Life Sci, Inst Geodesy & Geoinformat, Grunwaldzka 53, PL-50357 Wroclaw, Poland
[2] Univ Bern, Astron Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
来源
EARTH PLANETS AND SPACE | 2021年 / 73卷 / 01期
基金
欧洲研究理事会;
关键词
Satellite Laser Ranging (SLR); GNSS; Low Earth orbiters (LEOs); Galileo; Reference frame realization; ORBIT; GPS; MODEL; GLONASS; SERVICE;
D O I
10.1186/s40623-021-01397-1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The number of satellites equipped with retroreflectors dedicated to Satellite Laser Ranging (SLR) increases simultaneously with the development and invention of the spherical geodetic satellites, low Earth orbiters (LEOs), Galileo and other components of the Global Navigational Satellite System (GNSS). SLR and GNSS techniques onboard LEO and GNSS satellites create the possibility of widening the use of SLR observations for deriving SLR station coordinates, which up to now have been typically based on spherical geodetic satellites. We determine SLR station coordinates based on integrated SLR observations to LEOs, spherical geodetic, and GNSS satellites orbiting the Earth at different altitudes, from 330 to 26,210 km. The combination of eight LEOs, LAGEOS-1/2, LARES, and 13 Galileo satellites increased the number of 7-day SLR solutions from 10-20% to even 50%. We discuss the issues of handling of range biases in multi-satellite combinations and the proper solution constraining and weighting. Weighted combination is characterized by a reduction of formal error medians of estimated station coordinates up to 50%, and the reduction of station coordinate residuals. The combination of all satellites with optimum weighting increases the consistency of station coordinates in terms of interquartile ranges by 10% of horizontal components for non-core stations w.r.t LAGEOS-only solutions.
引用
收藏
页数:21
相关论文
共 67 条
  • [1] ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions
    Altamimi, Zuheir
    Rebischung, Paul
    Metivier, Laurent
    Collilieux, Xavier
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (08) : 6109 - 6131
  • [2] [Anonymous], 2010, IERS Technical Note
  • [3] Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014
    Appleby, Graham
    Rodriguez, Jose
    Altamimi, Zuheir
    [J]. JOURNAL OF GEODESY, 2016, 90 (12) : 1371 - 1388
  • [4] CODE's new solar radiation pressure model for GNSS orbit determination
    Arnold, D.
    Meindl, M.
    Beutler, G.
    Dach, R.
    Schaer, S.
    Lutz, S.
    Prange, L.
    Sosnica, K.
    Mervart, L.
    Jaeggi, A.
    [J]. JOURNAL OF GEODESY, 2015, 89 (08) : 775 - 791
  • [5] Arnold D., 2018, CODE PRODUCT SERIES
  • [6] Satellite laser ranging to low Earth orbiters: orbit and network validation
    Arnold, Daniel
    Montenbruck, Oliver
    Hackel, Stefan
    Sosnica, Krzysztof
    [J]. JOURNAL OF GEODESY, 2019, 93 (11) : 2315 - 2334
  • [7] The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014
    Bizouard, Christian
    Lambert, Sebastien
    Gattano, Cesar
    Becker, Olivier
    Richard, Jean-Yves
    [J]. JOURNAL OF GEODESY, 2019, 93 (05) : 621 - 633
  • [8] Second-degree Stokes coefficients from multi-satellite SLR
    Blossfeld, Mathis
    Mueller, Horst
    Gerstl, Michael
    Stefka, Vojtech
    Bouman, Johannes
    Goettl, Franziska
    Horwath, Martin
    [J]. JOURNAL OF GEODESY, 2015, 89 (09) : 857 - 871
  • [9] Buckreuss S, 2003, INT GEOSCI REMOTE SE, P3096
  • [10] Determination of precise Galileo orbits using combined GNSS and SLR observations
    Bury, Grzegorz
    Sosnica, Krzysztof
    Zajdel, Radoslaw
    Strugarek, Dariusz
    Hugentobler, Urs
    [J]. GPS SOLUTIONS, 2020, 25 (01)