Multi-objective optimization and thermo-economic analysis of an enhanced compression-absorption cascade refrigeration system and ORC integrated system for cooling and power cogeneration

被引:25
作者
Sun, Xiaojing [1 ]
Liu, Linlin [1 ]
Dong, Yachao [1 ]
Zhuang, Yu [1 ,2 ]
Li, Jiao [1 ]
Du, Jian [1 ]
Yin, HongChao [3 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Inst Proc Syst Engn, Dalian 116023, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Energy & Power Engn, Key Lab Liaoning Prov Desalinat, Dalian 116023, Liaoning, Peoples R China
[3] Dalian Univ Technol, Sch Energy & Power Engn, Dalian 116023, Liaoning, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Organic Rankine cycle; Cooling and power cogeneration; Multi-objective optimization; Thermo-economic analysis; Compression-absorption cascade refrigeration system; ORGANIC RANKINE-CYCLE; PERFORMANCE EVALUATION; WORKING FLUIDS; ENERGY; EXERGY; DESIGN;
D O I
10.1016/j.enconman.2021.114068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Waste heat recovery techniques can greatly improve the energy efficiency and relieve the energy crisis. The integration of compression-absorption cascade refrigeration system (CACRS) and Organic Rankine Cycle (ORC) can achieve cooling and power cogeneration utilizing waste heat. However, the simultaneous optimization of integrating configuration and operating parameters has not been considered in recent studies, neglecting the complex interactive relationship within the integrated system consequently. To overcome these limitations, an enhanced CACRS-ORC integrated system, containing more coupling possibilities and more routes in driving the integrated system with waste heat, is proposed and investigated in this paper. To examine the trade-off in the economic and thermodynamic performances, a multi-objective optimization-based method, aiming at the simultaneous minimization of the total annualized cost (TAC) and the total exergy destroy (Extotal destroy), is developed to determine the optimal configuration and operating parameters of the integrated system. The derived Pareto solutions reveal the contradictory relationship between the two objectives, and the thermo-economic analysis is executed to show the impact of system configuration and operating parameters on economy and thermodynamics. Sensitive analysis is also performed to reveal the effects of key parameters on the structural configuration and thermo-economic performances.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Thermo-economic and environmental evaluation of a novel SOFC based trigeneration system using organic Rankine cycle and cascaded vapor compression-absorption refrigeration system
    Khan, Yunis
    Singh, Pawan Kumar
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 57
  • [22] Multi-objective optimization of a cascade refrigeration system: Exergetic, economic, environmental, and inherent safety analysis
    Eini, Saeed
    Shahhosseini, Hamidreza
    Delgarm, Navid
    Lee, Moonyong
    Bahadori, Alireza
    APPLIED THERMAL ENGINEERING, 2016, 107 : 804 - 817
  • [23] Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat
    Xia, Jiaxi
    Wang, Jiangfeng
    Lou, Juwei
    Hu, Jianjun
    Yao, Sen
    ENERGY, 2023, 277
  • [24] Thermo-economic analysis of solar-biomass organic Rankine cycle powered cascaded vapor compression-absorption system
    Patel, Bhavesh
    Desai, Nishith B.
    Kachhwaha, Surendra Singh
    SOLAR ENERGY, 2017, 157 : 920 - 933
  • [25] Thermo-economic evaluation and multi-objective optimization of a waste heat driven combined cooling and power system based on a modified Kalina cycle
    Kalan, Ali Shokri
    Ghiasirad, Hamed
    Saray, Rahim Khoshbakhti
    Mirmasoumi, Siamak
    ENERGY CONVERSION AND MANAGEMENT, 2021, 247 (247)
  • [26] Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle
    Salim, Mohammad Saad
    Kim, Man-Hoe
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [27] Thermoeconomic Analysis of Novel Vapor Compression-Absorption Multi-Target-Temperature Cascade Refrigeration System
    Mishra, Shubham Kumar
    Sharma, Ajay
    Verma, Ashutosh Kumar
    Yadav, Laxmikant
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 15 (04)
  • [28] Thermo-economic analysis and multi-objective optimization of solar aided pumped thermal electricity storage system
    Yang, He
    Wu, Jiangbo
    Du, Xiaoze
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [29] Thermo-Economic Assessment and Multi-Objective Optimization of an Innovatively Designed District Cooling System in Saudi Arabia
    Alsagri, Ali Sulaiman
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (07):
  • [30] Thermo-economic multi-objective optimization of the liquid air energy storage system
    Liang, Ting
    She, Xiaohui
    Li, Yongliang
    Zhang, Tongtong
    Ding, Yulong
    JOURNAL OF ENERGY STORAGE, 2024, 84