Counterdiabatic transfer of a quantum state in a tunable Heisenberg spin chain via the variational principle

被引:8
作者
Ji, Yunlan [1 ]
Zhou, Feifei [1 ]
Chen, Xi [2 ,6 ]
Liu, Ran [3 ,4 ,5 ,6 ]
Li, Zhaokai [3 ,4 ,5 ]
Zhou, Hui [1 ,7 ]
Peng, Xinhua [3 ,4 ,5 ,6 ]
机构
[1] Hefei Univ Technol, Sch Phys, Hefei 230009, Anhui, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[5] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
[6] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum, Hefei 230026, Peoples R China
[7] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT; DYNAMICS; SYSTEMS;
D O I
10.1103/PhysRevA.105.052422
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a couple of counterdiabatic (CD) schemes for a rapid and high-fidelity transfer of quantum state across a one-dimensional spin chain, between two weakly coupled external qubits at each end. Employing the effective low-energy Hamiltonian of the system, we first construct the optimal CD terms based on the variational principle and then put forward two experimentally feasible shortcuts, which only need to manipulate couplings between the external qubits and chain. Compared to traditional adiabatic protocol, the resulting schemes allow a drastic increase in state-transfer fidelity in a short time. Furthermore, numerical simulation demonstrates that our speed-up protocols hold robustness against the imperfections of control fields and evolution time. The proposed schemes may be applicable to fast quantum-information transport in various spin-based physical systems.
引用
收藏
页数:10
相关论文
共 66 条
[1]   Superadiabatic quantum state transfer in spin chains [J].
Agundez, R. R. ;
Hill, C. D. ;
Hollenberg, L. C. L. ;
Rogge, S. ;
Blaauboer, M. .
PHYSICAL REVIEW A, 2017, 95 (01)
[2]   Quantum Communication beyond the Localization Length in Disordered Spin Chains [J].
Allcock, Jonathan ;
Linden, Noah .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[3]   Quantum state transfer in a disordered one-dimensional lattice [J].
Ashhab, S. .
PHYSICAL REVIEW A, 2015, 92 (06)
[4]   Shortcuts to adiabaticity in the presence of a continuum: Applications to itinerant quantum state transfer [J].
Baksic, Alexandre ;
Belyansky, Ron ;
Ribeiro, Hugo ;
Clerk, Aashish A. .
PHYSICAL REVIEW A, 2017, 96 (02)
[5]   Speeding up Adiabatic Quantum State Transfer by Using Dressed States [J].
Baksic, Alexandre ;
Ribeiro, Hugo ;
Clerk, Aashish A. .
PHYSICAL REVIEW LETTERS, 2016, 116 (23)
[6]   Adiabatic quantum transport in a spin chain with a moving potential [J].
Balachandran, Vinitha ;
Gong, Jiangbin .
PHYSICAL REVIEW A, 2008, 77 (01)
[7]   Transitionless quantum driving [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
[8]   The Magnus expansion and some of its applications [J].
Blanes, S. ;
Casas, F. ;
Oteo, J. A. ;
Ros, J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 470 (5-6) :151-238
[9]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[10]   Quantum communication through spin chain dynamics: an introductory overview [J].
Bose, Sougato .
CONTEMPORARY PHYSICS, 2007, 48 (01) :13-30