Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients

被引:28
作者
Cui, Jianbo [1 ]
Hong, Jialin [2 ,3 ]
Sun, Liying [2 ,3 ]
机构
[1] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak convergence; Invariant measure; Kolmogorov equation; Malliavin calculus; PARTIAL-DIFFERENTIAL-EQUATIONS; APPROXIMATION; RATES;
D O I
10.1016/j.spa.2020.12.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a full discretization to approximate the invariant measure numerically for parabolic stochastic partial differential equations (SPDEs) with non-globally Lipschitz coefficients. We present a priori estimates and regularity estimates of the numerical solution via a variational approach and Malliavin calculus. Under certain hypotheses, we present the time-independent regularity estimates for the corresponding Kolmogorov equation and the time-independent weak convergence analysis for the full discretization. Furthermore, we show that the V-uniformly ergodic invariant measure of the original system is approximated by this full discretization with weak convergence rate. Numerical experiments verify theoretical findings. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 93
页数:39
相关论文
共 33 条
[1]   WEAK CONVERGENCE FOR A SPATIAL APPROXIMATION OF THE NONLINEAR STOCHASTIC HEAT EQUATION [J].
Andersson, Adam ;
Larsson, Stig .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1335-1358
[2]  
[Anonymous], 2004, ADV COURSES MATH
[3]  
[Anonymous], 2001, Lecture Notes in Mathematics
[4]  
Becker S., 2017, ARXIV171102423
[5]   Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations [J].
Becker, Sebastian ;
Jentzen, Arnulf .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) :28-69
[6]   ANALYSIS OF SOME SPLITTING SCHEMES FOR THE STOCHASTIC ALLEN-CAHN EQUATION [J].
Brehier, Charles-Edouard ;
Goudenege, Ludovic .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08) :4169-4190
[7]   Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation [J].
Brehier, Charles-Edouard ;
Cui, Jianbo ;
Hong, Jialin .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) :2096-2134
[8]   Kolmogorov equations and weak order analysis for SPDEs with nonlinear diffusion coefficient [J].
Brehier, Charles-Edouard ;
Debussche, Arnaud .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 :193-254
[9]   Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme [J].
Brehier, Charles-Edouard ;
Kopec, Marie .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1375-1410