Nanostructured materials for energy storage and energy conversion devices

被引:0
|
作者
Reisner, DE [1 ]
Xiao, TD [1 ]
Strutt, PR [1 ]
Salkind, AJ [1 ]
机构
[1] US Nanocorp Inc, N Haven, CT 06473 USA
来源
IECEC-97 - PROCEEDINGS OF THE THIRTY-SECOND INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4: VOL.1: AEROSPACE POWER SYSTEMS AND TECHNOL; VOL 2: ELECTROCHEMICAL TECHNOL, CONVERSION TECHNOL, THERMAL MANAGEMENT; VOLS 3: ENERGY SYSTEMS, RENEWABLE ENERGY RESOURCES, ENVIRONMENTAL IMPACT, POLICY IMPACTS ON ENERGY; VOL 4: POST DEADLINE PAPERS, INDEX | 1997年
关键词
D O I
10.1109/IECEC.1997.661958
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
US Nanocorp, Inc. (USN) has developed an aqueous solution reaction (ASR) technique scalable for high volume production of nanostructured materials (n-materials) for a wide range of applications. By definition, nanophase materials have at least one physical dimension less than 10 nanometers (ma) in length, an attribute which imparts exceptional properties to them because the particle dimensions are close to atomic dimensions and there are a very high fraction of atoms residing at nanocrystalline grain boundaries. The high surface area of these materials has significant implications with respect to energy storage devices with electrochemical active sites (batteries, ultracapacitors) and energy conversion devices depending on catalytic sites or defect structure (e.g., fuel cells and thermoelectric devices). Potential application areas in both energy conversion and energy storage are discussed. Morphological studies of manganese dioxide have revealed the existence of both nanoporosity and mesoporosity within unusual superstructures comprised of nanorod building blocks. Nanophase nickel hydroxide has also been synthesized. Preliminary electrochemical studies are reported.
引用
收藏
页码:1311 / 1316
页数:6
相关论文
共 50 条
  • [1] Nanostructured materials for electrochemical energy conversion and storage devices
    Guo, Yu-Guo
    Hu, Jin-Song
    Wan, Li-Jun
    ADVANCED MATERIALS, 2008, 20 (15) : 2878 - 2887
  • [2] Nanostructured materials for advanced energy conversion and storage devices
    Antonino Salvatore Aricò
    Peter Bruce
    Bruno Scrosati
    Jean-Marie Tarascon
    Walter van Schalkwijk
    Nature Materials, 2005, 4 : 366 - 377
  • [3] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [4] Nanostructured materials for electrochemical energy conversion and storage devices
    Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
    Adv Mater, 2008, 15 (2878-2887):
  • [5] Nanostructured Materials for Energy Storage and Conversion
    Pasquini, Luca
    NANOMATERIALS, 2022, 12 (09)
  • [6] Nanostructured carbon materials for energy conversion and storage
    RSC Catalysis Series, 2015, 2015-January (23): : 445 - 506
  • [7] Nanostructured energy materials for electrochemical energy conversion and storage: A review
    Xueqiang Zhang
    Xinbing Cheng
    Qiang Zhang
    Journal of Energy Chemistry, 2016, 25 (06) : 967 - 984
  • [8] Nanostructured energy materials for electrochemical energy conversion and storage: A review
    Zhang, Xueqiang
    Cheng, Xinbing
    Zhang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (06) : 967 - 984
  • [9] Nanostructured Electrochemical Devices for Sensing, Energy Conversion and Storage
    Sunseri, Carmelo
    Cocchiara, Cristina
    Ganci, Fabrizio
    Moncada, Alessandra
    Oliveri, Roberto Luigi
    Patella, Bernardo
    Piazza, Salvatore
    Inguanta, Rosalinda
    INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY BASED INNOVATIVE APPLICATIONS FOR THE ENVIRONMENT, 2016, 47 : 43 - 48
  • [10] Mesoporous materials for energy conversion and storage devices
    Wei Li
    Jun Liu
    Dongyuan Zhao
    Nature Reviews Materials, 1