DISPERSION FOR THE SCHRODINGER EQUATION ON THE LINE WITH MULTIPLE DIRAC DELTA POTENTIALS AND ON DELTA TREES

被引:19
作者
Banica, Valeria [1 ]
Ignat, Liviu I. [2 ]
机构
[1] Univ Evry, Lab Math & Modelisat Evry UMR 8071, Dept Math, F-91037 Evry, France
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
关键词
Schrodinger equation on metric graphs; with 1-D delta potentials; representation of solutions; dispersion and Strichartz estimates; FAST SOLITON SCATTERING; QUANTUM GRAPHS; SPECTRAL PROPERTIES; STANDING WAVES; TIME-DECAY; PROPAGATOR; STABILITY; OPERATORS; STATES; NLS;
D O I
10.2140/apde.2014.7.903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-dependent one-dimensional Schrodinger equation with multiple Dirac delta potentials of different strengths. We prove that the classical dispersion property holds under some restrictions on the strengths and on the lengths of the finite intervals. The result is obtained in a more general setting of a Laplace operator on a tree with delta-coupling conditions at the vertices. The proof relies on a careful analysis of the properties of the resolvent of the associated Hamiltonian. With respect to our earlier analysis for Kirchhoff conditions [J. Math. Phys. 52:8 (2011), #083703], here the resolvent is no longer in the framework of Wiener algebra of almost periodic functions, and its expression is harder to analyse.
引用
收藏
页码:903 / 927
页数:25
相关论文
共 45 条
[1]   The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1 [J].
Adami, R ;
Sacchetti, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (39) :8379-8392
[2]   Stationary states of NLS on star graphs [J].
Adami, R. ;
Cacciapuoti, C. ;
Finco, D. ;
Noja, D. .
EPL, 2012, 100 (01)
[3]  
Adami R., 2012, TO APPEAR IN ANN INS
[4]   Variational properties and orbital stability of standing waves for NLS equation on a star graph [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) :3738-3777
[5]   On the structure of critical energy levels for the cubic focusing NLS on star graphs [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
[6]   FAST SOLITONS ON STAR GRAPHS [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (04) :409-451
[7]   Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect [J].
Adami, Riccardo ;
Noja, Diego .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
[8]   TIME-DEPENDENT PROPAGATOR WITH POINT INTERACTION [J].
ALBEVERIO, S ;
BRZEZNIAK, Z ;
DABROWSKI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (14) :4933-4943
[9]  
ALBEVERIO S, 1984, J OPERAT THEOR, V12, P101
[10]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2