DISPERSION FOR THE SCHRODINGER EQUATION ON THE LINE WITH MULTIPLE DIRAC DELTA POTENTIALS AND ON DELTA TREES

被引:18
|
作者
Banica, Valeria [1 ]
Ignat, Liviu I. [2 ]
机构
[1] Univ Evry, Lab Math & Modelisat Evry UMR 8071, Dept Math, F-91037 Evry, France
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
来源
ANALYSIS & PDE | 2014年 / 7卷 / 04期
关键词
Schrodinger equation on metric graphs; with 1-D delta potentials; representation of solutions; dispersion and Strichartz estimates; FAST SOLITON SCATTERING; QUANTUM GRAPHS; SPECTRAL PROPERTIES; STANDING WAVES; TIME-DECAY; PROPAGATOR; STABILITY; OPERATORS; STATES; NLS;
D O I
10.2140/apde.2014.7.903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-dependent one-dimensional Schrodinger equation with multiple Dirac delta potentials of different strengths. We prove that the classical dispersion property holds under some restrictions on the strengths and on the lengths of the finite intervals. The result is obtained in a more general setting of a Laplace operator on a tree with delta-coupling conditions at the vertices. The proof relies on a careful analysis of the properties of the resolvent of the associated Hamiltonian. With respect to our earlier analysis for Kirchhoff conditions [J. Math. Phys. 52:8 (2011), #083703], here the resolvent is no longer in the framework of Wiener algebra of almost periodic functions, and its expression is harder to analyse.
引用
收藏
页码:903 / 927
页数:25
相关论文
共 50 条
  • [1] SCHRODINGER-EQUATION WITH DELTA' AND DELTA''-POTENTIALS
    PATIL, SH
    PHYSICA SCRIPTA, 1994, 49 (06): : 645 - 650
  • [2] Properties of bound states of the Schrodinger equation with attractive Dirac delta potentials
    Demiralp, E
    Beker, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7449 - 7459
  • [3] The fractional Schrodinger equation for delta potentials
    de Oliveira, Edmundo Capelas
    Costa, Felix Silva
    Vaz, Jayme, Jr.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [4] EXACT TREATMENT OF DIRAC DELTA FUNCTION POTENTIAL IN SCHRODINGER EQUATION
    ATKINSON, DA
    CRATER, HW
    AMERICAN JOURNAL OF PHYSICS, 1975, 43 (04) : 301 - 304
  • [5] Solutions of the Schrodinger equation for Dirac delta decorated linear potential
    Uncu, H
    Erkol, H
    Demiralp, E
    Beker, H
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2005, 3 (02): : 303 - 323
  • [6] Bound states of a one-dimensional Dirac equation with multiple delta-potentials
    Gusynin, V. P.
    Sobol, O. O.
    Zolotaryuk, A. V.
    Zolotaryuk, Y.
    LOW TEMPERATURE PHYSICS, 2022, 48 (12) : 1022 - 1032
  • [7] Accurate and efficient numericalmethods for the nonlinear Schrodinger equation with Dirac delta potential
    Zhou, Xuanxuan
    Cai, Yongyong
    Tang, Xingdong
    Xu, Guixiang
    CALCOLO, 2023, 60 (04)
  • [8] Time dependent solutions for a fractional Schrodinger equation with delta potentials
    Lenzi, E. K.
    Ribeiro, H. V.
    dos Santos, M. A. F.
    Rossato, R.
    Mendes, R. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [9] Nonlinear Schrodinger equation with a Dirac delta potential: finite difference method*
    Cheng, Bin
    Chen, Ya-Ming
    Xu, Chuan-Fu
    Li, Da-Li
    Deng, Xiao-Gang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (02)
  • [10] Fractional Schrodinger equation and anomalous relaxation: Nonlocal terms and delta potentials
    Lenzi, Ervin K.
    Evangelista, Luiz R.
    Zola, Rafael S.
    Petreska, Irina
    Sandev, Trifce
    MODERN PHYSICS LETTERS A, 2021, 36 (14)