Automatic continuity of basis separating maps

被引:0
作者
Beckenstein, E [1 ]
Narici, L [1 ]
机构
[1] St Johns Univ, Jamaica, NY 10301 USA
来源
ULTRAMETRIC FUNCTIONAL ANALYSIS | 2003年 / 319卷
关键词
automatic continuity; open mapping theorem; separating map;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be non-Archimedean Banach spaces with bases (see Def. 2.1) B-X = {x(s) : s epsilon S} and B-Y = {y(t) : t epsilon T}. We say that an additive map H : X --> Y, Sigma(sepsilonS) x(s)x(s) --> Sigma(tepsilonT) Hx (t) Y-t, is basis separating (with respect to B-X and B-Y) if, for all x, z epsilon X, x (s) y (s) = 0 for all s implies Hx (t) Hz (t) = 0 for all t. We prove (Theorem 4.2(a)) that certain linear injective basis covering maps H are automatically continuous. We also deduce (Theorem 4.2(b)) an open mapping theorem, namely that, with no continuity assumptions on H, a linear bijective basis separating map H : X --> Y is a homeomorphism.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 1978, Non-Archimedean functional analysis
[2]   BISEPARATING MAPS AND HOMEOMORPHIC REAL-COMPACTIFICATIONS [J].
ARAUJO, J ;
BECKENSTEIN, E ;
NARICI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (01) :258-265
[3]  
ARAUJO J, 1995, ANN MATH BLAISE PASC, V2, P19
[4]  
Bachman G., 1966, Functional analysis
[5]   AUTOMATIC-CONTINUITY OF LINEAR-MAPS ON SPACES OF CONTINUOUS-FUNCTIONS [J].
BECKENSTEIN, E ;
NARICI, L ;
TODD, AR .
MANUSCRIPTA MATHEMATICA, 1988, 62 (03) :257-275
[6]  
BECKENSTEIN E, IN PRESS TOPOLOGY P
[7]  
NARICI L, 1998, REND CIRC MAT PALE S, V52, P637
[8]  
NARICI L, 1994, SEPARATING MAPS RING, P69