84%-Efficiency Fully Integrated Voltage Regulator for Computing Systems Enabled by 2.5-D High-Density MIM Capacitor

被引:8
作者
Lin, Hesheng [1 ,2 ]
Velenis, Dimitrios [2 ]
Nolmans, Philip [2 ]
Sun, Xiao [2 ]
Catthoor, Francky [1 ,2 ]
Lauwereins, Rudy [1 ,2 ]
Van der Plas, Geert [2 ]
Beyne, Eric [2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3000 Leuven, Belgium
[2] IMEC, B-3001 Heverlee, Belgium
关键词
Capacitors; MIM capacitors; Dielectrics; Density measurement; Capacitance; Charge pumps; Power system measurements; BC; m-thin profile; capacitor; high efficiency; high-power density; integrated voltage regulator (IVR); system integration;
D O I
10.1109/TVLSI.2022.3149589
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a mu m-thin-profile power delivery solution including a charge pump with integrated passives. Targeting 1 W/mm(2) or higher power density, a 2.5-D high-density metal-insulator-metal (MIM) capacitor deposited on high aspect ratio (HAR) (up to 5) oxide studs is proposed. With approximately 25-nm-thick HfAlOx dielectric, its measured capacitance density is 25.4 nF/mm(2) for a capacitor size ranging from 1/16 mm(2) to 1 mm(2). This shows 3.6x density improvement compared with the planar MIM. Theoretically, 86 nF/mm(2) density@1.36-V bias can be obtained if a 10-nm dielectric is deposited. Moreover, the measured leakage current density is within 65 pA/mm(2) at 1-V bias (negligible for a 1 W/mm(2)-power delivery). For a backside (BS) power delivery, this 2.5-D MIM capacitor can be realized by only three BS metal layers. This enables the low-cost and thin-profile delivery system (similar to mu m thickness), and the whole power delivery efficiency including a 1/2-ratio charge pump is eta = 84%@1 W/mm(2) (>5% boost in the power efficiency).
引用
收藏
页码:661 / 665
页数:5
相关论文
共 14 条
[1]   A 10 W On-Chip Switched Capacitor Voltage Regulator With Feedforward Regulation Capability for Granular Microprocessor Power Delivery [J].
Andersen, Toke M. ;
Krismer, Florian ;
Kolar, Johann W. ;
Toifl, Thomas ;
Menolfi, Christian ;
Kull, Lukas ;
Morf, Thomas ;
Kossel, Marcel ;
Braendli, Matthias ;
Francese, Pier Andrea .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (01) :378-393
[2]   Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters [J].
Hanh-Phuc Le ;
Sanders, Seth R. ;
Alon, Elad .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (09) :2120-2131
[3]  
Horowitz M, 2014, ISSCC DIG TECH PAP I, V57, P10, DOI 10.1109/ISSCC.2014.6757323
[4]   Power Delivery Network (PDN) Modeling for Backside-PDN Configurations With Buried Power Rails and $\mu$ TSVs [J].
Hossen, Md Obaidul ;
Chava, Bharani ;
Van der Plas, Geert ;
Beyne, Eric ;
Bakir, Muhannad S. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (01) :11-17
[5]   Integrated Deep Trench Capacitor in Si Interposer for CoWoS Heterogeneous Integration [J].
Hou, S. Y. ;
Hsia, H. ;
Tsai, C. H. ;
Ting, K. C. ;
Yu, T. H. ;
Lee, Y. W. ;
Chen, F. C. ;
Chiou, W. C. ;
Wang, C. T. ;
Wu, C. H. ;
Yu, Douglas .
2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
[6]  
Kim J, 2015, P INT 3D SYST INT C, pT222
[7]   Package Inductors for Intel Fully Integrated Voltage Regulators [J].
Lambert, William J. ;
Hill, Michael J. ;
Radhakrishnan, Kaladhar ;
Wojewoda, Leigh ;
Augustine, Anne E. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2016, 6 (01) :3-11
[8]  
Liao WS, 2014, INT EL DEVICES MEET
[9]  
Lin H., 2021, P S VLSI TECHN JUN, P1
[10]  
Neve CR, 2016, IEEE INT 3D SYST