Ramification theory for Artin-Schreier extensions of valuation rings

被引:4
作者
Thatte, Vaidehee [1 ]
机构
[1] Univ Chicago, Dept Math, 5734 Univ Ave, Chicago, IL 60637 USA
关键词
Algebraic number theory; Ramification theory; Valuation rings; Artin-Schreier extensions; Defect; Refined Swan conductor; Different ideal; Logarithmic differential; FIELD;
D O I
10.1016/j.jalgebra.2016.01.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to generalize and refine the classical ramification theory of complete discrete valuation rings to more general valuation rings, in the case of Artin-Schreier extensions. We define refined versions of invariants of ramification in the classical ramification theory and compare them. Furthermore, we can treat the defect case. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 389
页数:35
相关论文
共 9 条
[1]  
ABHYANKAR S, 1959, ANN MATH STUDIES, V43
[3]  
KATO K, 1987, ADV STUD PURE MATH, V0012, P00315
[4]  
Kato K., 1989, Contemp. Math., V83, P101
[5]  
KATO K., 2011, TRANSL MATH MONOGR, V240
[6]   RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD [J].
Kato, Kazuya ;
Saito, Takeshi .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117) :1-178
[7]  
Kuhlmann F.V., 2006, Lecture Notes for the Summer School on Resolution of Singularities
[8]  
Neukirch J., 1999, Algebraic Number Theory, DOI DOI 10.1007/978-3-662-03983-0
[9]  
Serre J-P., 1979, LOCAL FIELDS