miR-133: A Suppressor of Cardiac Remodeling?

被引:102
作者
Li, Ning [1 ,2 ,3 ]
Zhou, Heng [1 ,2 ,3 ]
Tang, Qizhu [1 ,2 ,3 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Cardiol, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, Cardiovasc Res Inst, Wuhan, Hubei, Peoples R China
[3] Hubei Key Lab Cardiol, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
miR-133; fibrosis; hypertrophy; electrical remodeling; reprogram; TISSUE GROWTH-FACTOR; MAPK SIGNALING PATHWAY; HEART-FAILURE; TGF-BETA; MYOCARDIAL FIBROSIS; ATRIAL-FIBRILLATION; DOWN-REGULATION; UP-REGULATION; CANCER CELLS; K+ CHANNEL;
D O I
10.3389/fphar.2018.00903
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cardiac remodeling, which is characterized by mechanical and electrical remodeling, is a significant pathophysiological process involved in almost all forms of heart diseases. MicroRNAs (miRNAs) are a group of non-coding RNAs of 20-25 nucleotides in length that primarily regulate gene expression by promoting mRNA degradation or post-transcriptional repression in a sequence-specific manner. Three miR-133 genes have been identified in the human genome, miR-133a-1, miR-133a-2, and miR-133b, which are located on chromosomes 18, 20, and 6, respectively. ThesemiRNAs are mainly expressed in muscle tissues and appear to repress the expression of non-muscle genes. Based on accumulating evidence, miR-133 participates in the proliferation, differentiation, survival, hypertrophic growth, and electrical conduction of cardiac cells, which are essential for cardiac fibrosis, cardiac hypertrophy, and arrhythmia. Nevertheless, the roles of miR-133 in cardiac remodeling are ambiguous, and the mechanisms are also sophisticated, involving many target genes and signaling pathways, such as RhoA, MAPK, TGF beta/Smad, and PI3K/Akt. Therefore, in this review, we summarize the critical roles of miR-133 and its potential mechanisms in cardiac remodeling.
引用
收藏
页数:19
相关论文
共 185 条
  • [31] Resveratrol prevents pathological but not physiological cardiac hypertrophy
    Dolinsky, Vernon W.
    Soltys, Carrie-Lynn M.
    Rogan, Kyle J.
    Chan, Anita Y. M.
    Nagendran, Jeevan
    Wang, Shaohua
    Dyck, Jason R. B.
    [J]. JOURNAL OF MOLECULAR MEDICINE-JMM, 2015, 93 (04): : 413 - 425
  • [32] Reciprocal Repression Between MicroRNA-133 and Calcineurin Regulates Cardiac Hypertrophy A Novel Mechanism for Progressive Cardiac Hypertrophy
    Dong, De-Li
    Chen, Chang
    Huo, Rong
    Wang, Ning
    Li, Zhe
    Tu, Yu-Jie
    Hu, Jun-Tao
    Chu, Xia
    Huang, Wei
    Yang, Bao-Feng
    [J]. HYPERTENSION, 2010, 55 (04) : 946 - U249
  • [33] Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy
    Drawnel, Faye M.
    Wachten, Dagmar
    Molkentin, Jeffery D.
    Maillet, Marjorie
    Aronsen, Jan Magnus
    Swift, Fredrik
    Sjaastad, Ivar
    Liu, Ning
    Catalucci, Daniele
    Mikoshiba, Katsuhiko
    Hisatsune, Chihiro
    Okkenhaug, Hanneke
    Andrews, Simon R.
    Bootman, Martin D.
    Roderick, H. Llewelyn
    [J]. JOURNAL OF CELL BIOLOGY, 2012, 199 (05) : 783 - 798
  • [34] miR-133 and miR-30 Regulate Connective Tissue Growth Factor Implications for a Role of MicroRNAs in Myocardial Matrix Remodeling
    Duisters, Rudy F.
    Tijsen, Anke J.
    Schroen, Blanche
    Leenders, Joost J.
    Lentink, Viola
    van der Made, Ingeborg
    Herias, Veronica
    van Leeuwen, Rick E.
    Schellings, Mark W.
    Barenbrug, Paul
    Maessen, Jos G.
    Heymans, Stephane
    Pinto, Yigal M.
    Creemers, Esther E.
    [J]. CIRCULATION RESEARCH, 2009, 104 (02) : 170 - U61
  • [35] Functional screening identifies miRNAs inducing cardiac regeneration
    Eulalio, Ana
    Mano, Miguel
    Dal Ferro, Matteo
    Zentilin, Lorena
    Sinagra, Gianfranco
    Zacchigna, Serena
    Giacca, Mauro
    [J]. NATURE, 2012, 492 (7429) : 376 - +
  • [36] A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation
    Feng, Y.
    Niu, L-L
    Wei, W.
    Zhang, W-Y
    Li, X-Y
    Cao, J-H
    Zhao, S-H
    [J]. CELL DEATH & DISEASE, 2013, 4 : e934 - e934
  • [37] Requirement of protein kinase D1 for pathological cardiac remodeling
    Fielitz, Jens
    Kim, Mi-Sung
    Shelton, John M.
    Qi, Xiaoxia
    Hill, Joseph A.
    Richardson, James A.
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (08) : 3059 - 3063
  • [38] Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes
    Friedrich, KL
    Giese, KC
    Buan, NR
    Vierling, E
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (02) : 1080 - 1089
  • [39] Treatment with anti-TGF-β antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-β signaling
    Fukasawa, H
    Yamamoto, T
    Suzuki, H
    Togawa, A
    Ohashi, N
    Fujigaki, Y
    Uchida, C
    Aoki, M
    Hosono, M
    Kitagawa, M
    Hishida, A
    [J]. KIDNEY INTERNATIONAL, 2004, 65 (01) : 63 - 74
  • [40] Lysyl oxidase expression in cardiac fibroblasts is regulated by α2β1 integrin interactions with the cellular microenvironment
    Gao, Albert E.
    Sullivan, Kelly E.
    Black, Lauren D., III
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 475 (01) : 70 - 75