Time-variance of interacting dipole systems

被引:5
作者
Kuehn, M. [1 ]
Kliem, H. [1 ]
机构
[1] Univ Saarland, Inst Elect Engn Phys, D-66041 Saarbrucken, Germany
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2007年 / 244卷 / 04期
关键词
FREQUENCY-DOMAIN; RELAXATION;
D O I
10.1002/pssb.200642291
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In a previous paper we performed numerical calculations of transient polarization relaxations for an interacting system of statistically distributed permanent dipoles. These simulations in the time-domain showed the typical Kohlrausch relaxation law. Now the relaxating system is tested for time-invariance. Using the dependencies of the dielectric circle integral transformations between time domain and frequency domain are carried out and are compared to our Monte Carlo simulations. The following simulation of the field reversal experiment based on the superposition principle for the polarization or rather current density demonstrates an alternative of testing a system for the properties of linearity and time-invariance. The interacting systems exhibit a time-variant character. In this paper we focus on the small signal response after applying a step function of the electric field. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1418 / 1428
页数:11
相关论文
共 25 条
[1]  
ADAMEC J, 1986, 2 INT C COND BREAKD
[2]  
[Anonymous], 1993, DIELECTRIQUES PROPRI
[3]   ON THE ANALYSIS OF DIELECTRIC RELAXATION MEASUREMENTS [J].
COLE, RH .
JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (03) :493-499
[4]  
DIAS JC, 1996, PHYS REV B, V53
[5]   THE FRACTAL NATURE OF THE CLUSTER MODEL DIELECTRIC RESPONSE FUNCTIONS [J].
DISSADO, LA ;
HILL, RM .
JOURNAL OF APPLIED PHYSICS, 1989, 66 (06) :2511-2524
[6]   Numerical transformations of wide-range time- and frequency-domain relaxational spectra [J].
Farag, N ;
Holten, S ;
Wagner, A ;
Kliem, H .
IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 2003, 150 (02) :65-74
[7]  
Frohlich H., 1960, Theory of dielectrics
[8]  
Gross B., 1953, Mathematical Structure of the Theories of Viscoelasticity
[9]  
GUO TC, 1982, IEEE C EL INS DIEL P, P29
[10]  
Jonscher A. K., 1980, PHYS THIN FILMS, V11, P205