Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage

被引:150
作者
Yang, Xiya [1 ]
Gong, Lei [1 ]
Liu, Xiaolin [1 ]
Zhang, Pianpian [1 ]
Li, Bowen [1 ]
Qi, Dongdong [1 ]
Wang, Kang [1 ]
He, Feng [2 ]
Jiang, Jianzhuang [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing Key Lab Sci & Applicat Funct Mol & Crysta, Dept Chem & Chem Engn,Sch Chem & Biological Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Mol Sci BNLMS, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China
关键词
Cathodes; Covalent Organic Frameworks; Hexaazatrinaphthylene; Li-Ion Batteries; Polyarylimides; ELECTROCHEMICAL ENERGY-STORAGE; ELECTRODE MATERIALS; BATTERY; BEHAVIOR; LIFEPO4; OXIDE;
D O I
10.1002/anie.202207043
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent organic frameworks (COFs) are gaining increasing attention as renewable cathode materials for Li-ion batteries. However, COF electrodes reported so far still exhibit unsatisfying capacity due to their limited active site density and insufficient utilization. Herein, a new two-dimensional polyimide-linked COF, HATN-AQ-COF with multiple redox-active sites for storing Li+ ions, was designed and fabricated from a new module of 2,3,8,9,14,15-hexacarboxyl hexaazatrinaphthalene trianhydrides with a 2,6-diaminoanthraquinone linker. HATN-AQ-COF possessing excellent stability, good conductivity, and a large pore size of 3.8 nm enables the stable and fast ion transport. This, in combination with the abundant redox active sites, results in a high reversible capacity of 319 mAh g(-1) at 0.5 C (1 C=358 mA g(-1)) for the HATN-AQ-COF electrode with a high active site utilization of 89 % and good cycle performance, representing one of the best performances among the reported COF electrodes.
引用
收藏
页数:9
相关论文
共 84 条
  • [1] [Anonymous], 2014, Angew. Chem, V126, P2922
  • [2] [Anonymous], 2008, ANGEW CHEM, V120, P1669
  • [3] [Anonymous], 2018, ANGEW CHEM, V130, P9587
  • [4] INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES
    ARDIZZONE, S
    FREGONARA, G
    TRASATTI, S
    [J]. ELECTROCHIMICA ACTA, 1990, 35 (01) : 263 - 267
  • [5] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [6] Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries
    Bai, Songyan
    Kim, Byunghoon
    Kim, Chungryeol
    Tamwattana, Orapa
    Park, Hyeokjun
    Kim, Jihyeon
    Lee, Dongwhan
    Kang, Kisuk
    [J]. NATURE NANOTECHNOLOGY, 2021, 16 (01) : 77 - 84
  • [7] High-Capacitance Pseudocapacitors from Li+ Ion Intercalation in Nonporous, Electrically Conductive 2D Coordination Polymers
    Banda, Harish
    Dou, Jin-Hu
    Chen, Tianyang
    Libretto, Nicole J.
    Chaudhary, Madhusudan
    Bernard, Guy M.
    Miller, Jeffrey T.
    Michaelis, Vladimir K.
    Dinca, Mircea
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (05) : 2285 - 2292
  • [8] Chen H., 2021, ADV MATER, V33
  • [9] High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks
    Chen, Xiudong
    Li, Yusen
    Wang, Liang
    Xu, Yi
    Nie, Anmin
    Li, Qianqion
    Wu, Fan
    Sun, Weiwei
    Zhang, Xiang
    Vajtai, Robert
    Ajayan, Pulickel M.
    Chen, Long
    Wang, Yong
    [J]. ADVANCED MATERIALS, 2019, 31 (29)
  • [10] Designing High Performance Organic Batteries
    Chen, Yuan
    Wang, Chengliang
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (11) : 2636 - 2647