Quasi-isometries of C0(K, E) spaces which determine K for all Euclidean spaces E

被引:1
作者
Galego, Eloi Medina [1 ]
Porto da Silva, Andre Luis [1 ]
机构
[1] Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
关键词
nonlinear vector-valued Banach-Stone theorem; C-0(K; X); space; Euclidean space; quasi-isometry; NONLINEAR GEOMETRY; ISOMORPHISMS;
D O I
10.4064/sm8747-8-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for all Euclidean spaces E and locally compact Hausdorff spaces K and S, if there exists a bijective map T : C-0(K, E) -> C-0(S, E) such that 1/M parallel to f - g parallel to - L <= parallel to T(f) - T(g)parallel to <= M parallel to f - g parallel to + L for some constants 1 <= M < (4)root 2 and L >= 0 and for all f,g is an element of C-0(K, E), then K and S are homeomorphic. In other words, by using quasi-isometrics we obtain a nonlinear extension of the classical 1976 Hilbert vector-valued Banach-Stone theorem due to Cambern. In the Lipschitz case, that is, when L = 0, our result improves Jarosz's 1989 theorem.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 11 条
[1]  
Benyamini Y., 2000, American Mathematical Society Colloquium Publications, V48
[2]   ISOMORPHISMS OF C0(Y) ONTO C(X) [J].
CAMBERN, M .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 35 (02) :307-&
[3]  
CAMBERN M, 1976, ILLINOIS J MATH, V20, P1
[4]   Optimal extensions of the Banach-Stone theorem [J].
Cidral, Fabiano C. ;
Galego, Eloi Medina ;
Rincon-Villamizar, Michael A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) :193-204
[5]  
COHEN HB, 1975, P AM MATH SOC, V50, P215, DOI 10.2307/2040542
[6]   An optimal nonlinear extension of Banach-Stone theorem [J].
Galego, Eloi Medina ;
Porto da Silva, Andre Luis .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (08) :2166-2176
[7]  
Godefroy G, 2014, ROCKY MT J MATH, V44, P1529, DOI 10.1216/RMJ-2014-44-5-1529
[8]   Coarse version of the Banach-Stone theorem [J].
Gorak, Rafal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :406-413
[9]   NONLINEAR GENERALIZATIONS OF THE BANACH-STONE THEOREM [J].
JAROSZ, K .
STUDIA MATHEMATICA, 1989, 93 (02) :97-107
[10]  
Kalton NJ, 2008, REV MAT COMPLUT, V21, P7