Weak Galerkin method for the coupled Darcy-Stokes flow

被引:85
作者
Chen, Wenbin [1 ]
Wang, Fang [2 ]
Wang, Yanqiu [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
coupled Darcy-Stokes equation; weak Galerkin method; FINITE-ELEMENT-METHOD; FLUID-FLOW; BOUNDARY-CONDITION; NAVIER-STOKES; INTERFACE; JOSEPH; BEAVERS; MODEL; DISCRETIZATION; EQUATIONS;
D O I
10.1093/imanum/drv012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of weak Galerkin finite element discretizations is developed for solving the coupled Darcy-Stokes equation. The equation in consideration admits the Beaver-Joseph-Saffman condition on the interface. By using the weak Galerkin approach, in the discrete space we are able to impose the normal continuity of velocity explicitly. In other words, strong coupling is achieved in the discrete space. Different choices of weak Galerkin finite element spaces are discussed, and error estimates are given.
引用
收藏
页码:897 / 921
页数:25
相关论文
共 53 条
[1]   A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium [J].
Arbogast, Todd ;
Brunson, Dana S. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (03) :207-218
[2]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[3]   Mortar finite element discretization of a model coupling Darcy and Stokes equations [J].
Bernardi, Christine ;
Rebollo, Tomas Chacon ;
Hecht, Frederic ;
Mghazli, Zoubida .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03) :375-410
[4]  
Brenner SC, 2004, MATH COMPUT, V73, P1067
[5]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[6]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[7]   Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition [J].
Cao, Yanzhao ;
Gunzburger, Max ;
He, Xiaoming ;
Wang, Xiaoming .
NUMERISCHE MATHEMATIK, 2011, 117 (04) :601-629
[8]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256
[9]  
Cao YZ, 2010, COMMUN MATH SCI, V8, P1
[10]   A posteriori error estimate for the H(div) conforming mixed finite element for the coupled Darcy-Stokes system [J].
Chen, Wenbin ;
Wang, Yanqiu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :502-516