Effects of the symmetry energy on the isovector properties of neutron-rich nuclei within a Thomas-Fermi approach

被引:3
作者
Papazoglou, M. C. [1 ]
Moustakidis, Ch. C. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Theoret Phys, Thessaloniki 54124, Greece
来源
PHYSICAL REVIEW C | 2014年 / 90卷 / 01期
关键词
STATISTICAL THEORY; SKIN THICKNESS; FINITE NUCLEI; EQUATION; STATE; MATTER; DEPENDENCE; RADII; STARS;
D O I
10.1103/PhysRevC.90.014305
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We employ a variational method, in the framework of the Thomas-Fermi approximation, to study the effect of the symmetry energy on the neutron skin thickness and the symmetry energy coefficients of various neutron-rich nuclei. We concentrate our interest on Pb-208, Sn-124, Zr-90, and Ca-48, although the method can be applied in the totality of medium and heavy neutron-rich nuclei. Our approach has the advantage that the isospin asymmetry function alpha(r), which is the key quantity for calculating isovector properties of various nuclei, is directly related to the symmetry energy as a consequence of the variational principle. Moreover, the Coulomb interaction is included in a self-consistent way and its effects can be separated easily from the nucleon-nucleon interaction. We confirm, both qualitatively and quantitatively, the strong dependence of the symmetry energy on the various isovector properties for the relevant nuclei, using possible constraints between the slope and the value of the symmetry energy at the saturation density.
引用
收藏
页数:10
相关论文
共 86 条
[1]   Measurement of the Neutron Radius of 208Pb through Parity Violation in Electron Scattering [J].
Abrahamyan, S. ;
Ahmed, Z. ;
Albataineh, H. ;
Aniol, K. ;
Armstrong, D. S. ;
Armstrong, W. ;
Averett, T. ;
Babineau, B. ;
Barbieri, A. ;
Bellini, V. ;
Beminiwattha, R. ;
Benesch, J. ;
Benmokhtar, F. ;
Bielarski, T. ;
Boeglin, W. ;
Camsonne, A. ;
Canan, M. ;
Carter, P. ;
Cates, G. D. ;
Chen, C. ;
Chen, J-P ;
Hen, O. ;
Cusanno, F. ;
Dalton, M. M. ;
De Leo, R. ;
de Jager, K. ;
Deconinck, W. ;
Decowski, P. ;
Deng, X. ;
Deur, A. ;
Dutta, D. ;
Etile, A. ;
Flay, D. ;
Franklin, G. B. ;
Friend, M. ;
Frullani, S. ;
Fuchey, E. ;
Garibaldi, F. ;
Gasser, E. ;
Gilman, R. ;
Giusa, A. ;
Glamazdin, A. ;
Gomez, J. ;
Grames, J. ;
Gu, C. ;
Hansen, O. ;
Hansknecht, J. ;
Higinbotham, D. W. ;
Holmes, R. S. ;
Holmstrom, T. .
PHYSICAL REVIEW LETTERS, 2012, 108 (11)
[2]   Determining the Density Content of Symmetry Energy and Neutron Skin: An Empirical Approach [J].
Agrawal, B. K. ;
De, J. N. ;
Samaddar, S. K. .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)
[3]   Asymmetric nuclear matter and neutron skin in an extended relativistic mean-field model [J].
Agrawal, B. K. .
PHYSICAL REVIEW C, 2010, 81 (03)
[4]  
[Anonymous], 2007, NEUTRON STARS
[5]   New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state [J].
Baldo, M. ;
Robledo, L. M. ;
Schuck, P. ;
Vinas, X. .
PHYSICAL REVIEW C, 2013, 87 (06)
[6]   Energy density functional on a microscopic basis [J].
Baldo, M. ;
Robledo, L. ;
Schuck, P. ;
Vinas, X. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2010, 37 (06)
[7]   THOMAS-FERMI THEORY OF NUCLEI [J].
BETHE, HA .
PHYSICAL REVIEW, 1968, 167 (04) :879-&
[8]   Nuclear asymmetry energy and isovector stiffness within the effective surface approximation [J].
Blocki, J. P. ;
Magner, A. G. ;
Ring, P. ;
Vlasenko, A. A. .
PHYSICAL REVIEW C, 2013, 87 (04)
[9]   Neutron and proton densities and the symmetry energy [J].
Bodmer, AR ;
Usmani, QN .
PHYSICAL REVIEW C, 2003, 67 (03)
[10]   Neutron radii in nuclei and the neutron equation of state [J].
Brown, BA .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5296-5299