Deep learning derived automated ASPECTS on non-contrast CT scans of acute ischemic stroke patients

被引:30
作者
Cao, Zehong [1 ,2 ]
Xu, Jiaona [3 ,4 ]
Song, Bin [5 ]
Chen, Lizhou [5 ]
Sun, Tianyang [2 ]
He, Yichu [2 ]
Wei, Ying [2 ]
Niu, Guozhong [4 ]
Zhang, Yu [1 ]
Feng, Qianjin [1 ]
Ding, Zhongxiang [6 ]
Shi, Feng [2 ]
Shen, Dinggang [2 ,7 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
[3] Zhejiang Chinese Med Univ, Sch Clin Med 4, Hangzhou, Peoples R China
[4] Zhejiang Univ, Affiliated Hangzhou Peoples Hosp 1, Dept Neurol, Sch Med, Hangzhou, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
[6] Zhejiang Univ, Affiliated Hangzhou Peoples Hosp 1, Dept Radiol,Sch Med, Key Lab Clin Canc Pharmacol & Toxicol Res Zhejian, Hangzhou, Peoples R China
[7] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
ASPECTS; asymmetry; deep learning; ischemic; stroke; COMPUTED-TOMOGRAPHY SCORE; WHITE-MATTER; THROMBECTOMY; CONNECTIVITY;
D O I
10.1002/hbm.25845
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ischemic stroke is the most common type of stroke, ranked as the second leading cause of death worldwide. The Alberta Stroke Program Early CT Score (ASPECTS) is considered as a systematic method of assessing ischemic change on non-contrast CT scans (NCCT) of acute ischemic stroke (AIS) patients, while still suffering from the requirement of experts' experience and also the inconsistent results between readers. In this study, we proposed an automated ASPECTS method to utilize the powerful learning ability of neural networks for objectively scoring CT scans of AIS patients. First, we proposed to use the CT perfusion (CTP) from one-stop stroke imaging to provide the golden standard of ischemic regions for ASPECTS scoring. Second, we designed an asymmetry network to capture features when comparing the left and right sides for each ASPECTS region to estimate its ischemic status. Third, we performed experiments in a large main dataset of 870 patients, as well as an independent testing dataset consisting of 207 patients with radiologists' scorings. Experimental results show that our network achieved remarkable performance, as sensitivity and accuracy of 93.7 and 92.4% in the main dataset, and 95.5 and 91.3% in the independent testing dataset, respectively. In the latter dataset, our analysis revealed a high positive correlation between the ASPECTS score and the prognosis of patients in 90DmRs. Also, we found ASPECTS score is a good indicator of the size of CTP core volume of an infraction. The proposed method shows its potential for automated ASPECTS scoring on NCCT images.
引用
收藏
页码:3023 / 3036
页数:14
相关论文
共 46 条
[11]   Segmenting Brain Tumor Using Cascaded V-Nets in Multimodal MR Images [J].
Hua, Rui ;
Huo, Quan ;
Gao, Yaozong ;
Sui, He ;
Zhang, Bing ;
Sun, Yu ;
Mo, Zhanhao ;
Shi, Feng .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[12]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[13]   ABSORB: Atlas building by self-organized registration and bundling [J].
Jia, Hongjun ;
Wu, Guorong ;
Wang, Qian ;
Shen, Dinggang .
NEUROIMAGE, 2010, 51 (03) :1057-1070
[14]   Functional Stroke Symptoms: A Narrative Review and Conceptual Model [J].
Jones, Abbeygail ;
O'Connell, Nicola ;
David, Anthony S. ;
Chalder, Trudie .
JOURNAL OF NEUROPSYCHIATRY AND CLINICAL NEUROSCIENCES, 2020, 32 (01) :14-23
[15]   Mechanical Thrombectomy in Ischemic Stroke Patients With Alberta Stroke Program Early Computed Tomography Score 0-5 [J].
Kaesmacher, Johannes ;
Chaloulos-Iakovidis, Panagiotis ;
Panos, Leonidas ;
Mordasini, Pasquale ;
Michel, Patrik ;
Hajdu, Steven D. ;
Ribo, Marc ;
Requena, Manuel ;
Maegerlein, Christian ;
Friedrich, Benjamin ;
Costalat, Vincent ;
Benali, Amel ;
Pierot, Laurent ;
Gawlitza, Matthias ;
Schaafsma, Joanna ;
Pereira, Vitor Mendes ;
Gralla, Jan ;
Fischer, Urs .
STROKE, 2019, 50 (04) :880-888
[16]  
Kalavathi P, 2017, TECHNOLOGIES, V5, DOI 10.3390/technologies5020016
[17]   Global Stroke Statistics 2019 [J].
Kim, Joosup ;
Thayabaranathan, Tharshanah ;
Donnan, Geoffrey A. ;
Howard, George ;
Howard, Virginia J. ;
Rothwell, Peter M. ;
Feigin, Valery ;
Norrving, Bo ;
Owolabi, Mayowa ;
Pandian, Jeyaraj ;
Liu, Liping ;
Cadilhac, Dominique A. ;
Thrift, Amanda G. .
INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (08) :819-838
[18]   Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning [J].
Kuang, H. ;
Najm, M. ;
Chakraborty, D. ;
Maraj, N. ;
Sohn, S. I. ;
Goyal, M. ;
Hill, M. D. ;
Demchuk, A. M. ;
Menon, B. K. ;
Qiu, W. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) :33-38
[19]   Validation of an automated ASPECTS method on non-contrast computed tomography scans of acute ischemic stroke patients [J].
Kuang, Hulin ;
Qiu, Wu ;
Najm, Mohamed ;
Dowlatshahi, Dar ;
Mikulik, Robert ;
Poppe, Alex Y. ;
Puig, Josep ;
Castellanos, Mar ;
Sohn, Sung, I ;
Ahn, Seong H. ;
Calleja, Ana ;
Jin, Albert ;
Asil, Talip ;
Asdaghi, Negar ;
Field, Thalia S. ;
Coutts, Shelagh ;
Hill, Michael D. ;
Demchuk, Andrew M. ;
Goyal, Mayank ;
Menon, Bijoy K. .
INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (05) :528-534
[20]   Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis [J].
Li, Aojie ;
Li, Fan ;
Elahifasaee, Farzaneh ;
Liu, Manhua ;
Zhang, Lichi .
BRAIN IMAGING AND BEHAVIOR, 2021, 15 (05) :2330-2339