Deep learning derived automated ASPECTS on non-contrast CT scans of acute ischemic stroke patients

被引:29
作者
Cao, Zehong [1 ,2 ]
Xu, Jiaona [3 ,4 ]
Song, Bin [5 ]
Chen, Lizhou [5 ]
Sun, Tianyang [2 ]
He, Yichu [2 ]
Wei, Ying [2 ]
Niu, Guozhong [4 ]
Zhang, Yu [1 ]
Feng, Qianjin [1 ]
Ding, Zhongxiang [6 ]
Shi, Feng [2 ]
Shen, Dinggang [2 ,7 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
[3] Zhejiang Chinese Med Univ, Sch Clin Med 4, Hangzhou, Peoples R China
[4] Zhejiang Univ, Affiliated Hangzhou Peoples Hosp 1, Dept Neurol, Sch Med, Hangzhou, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
[6] Zhejiang Univ, Affiliated Hangzhou Peoples Hosp 1, Dept Radiol,Sch Med, Key Lab Clin Canc Pharmacol & Toxicol Res Zhejian, Hangzhou, Peoples R China
[7] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
ASPECTS; asymmetry; deep learning; ischemic; stroke; COMPUTED-TOMOGRAPHY SCORE; WHITE-MATTER; THROMBECTOMY; CONNECTIVITY;
D O I
10.1002/hbm.25845
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ischemic stroke is the most common type of stroke, ranked as the second leading cause of death worldwide. The Alberta Stroke Program Early CT Score (ASPECTS) is considered as a systematic method of assessing ischemic change on non-contrast CT scans (NCCT) of acute ischemic stroke (AIS) patients, while still suffering from the requirement of experts' experience and also the inconsistent results between readers. In this study, we proposed an automated ASPECTS method to utilize the powerful learning ability of neural networks for objectively scoring CT scans of AIS patients. First, we proposed to use the CT perfusion (CTP) from one-stop stroke imaging to provide the golden standard of ischemic regions for ASPECTS scoring. Second, we designed an asymmetry network to capture features when comparing the left and right sides for each ASPECTS region to estimate its ischemic status. Third, we performed experiments in a large main dataset of 870 patients, as well as an independent testing dataset consisting of 207 patients with radiologists' scorings. Experimental results show that our network achieved remarkable performance, as sensitivity and accuracy of 93.7 and 92.4% in the main dataset, and 95.5 and 91.3% in the independent testing dataset, respectively. In the latter dataset, our analysis revealed a high positive correlation between the ASPECTS score and the prognosis of patients in 90DmRs. Also, we found ASPECTS score is a good indicator of the size of CTP core volume of an infraction. The proposed method shows its potential for automated ASPECTS scoring on NCCT images.
引用
收藏
页码:3023 / 3036
页数:14
相关论文
共 46 条
[1]   Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging [J].
Albers, G. W. ;
Marks, M. P. ;
Kemp, S. ;
Christensen, S. ;
Tsai, J. P. ;
Ortega-Gutierrez, S. ;
McTaggart, R. A. ;
Torbey, M. T. ;
Kim-Tenser, M. ;
Leslie-Mazwi, T. ;
Sarraj, A. ;
Kasner, S. E. ;
Ansari, S. A. ;
Yeatts, S. D. ;
Hamilton, S. ;
Mlynash, M. ;
Heit, J. J. ;
Zaharchuk, G. ;
Kim, S. ;
Carrozzella, J. ;
Palesch, Y. Y. ;
Demchuk, A. M. ;
Bammer, R. ;
Lavori, P. W. ;
Broderick, J. P. ;
Lansberg, M. G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) :708-718
[2]   Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy [J].
Barber, PA ;
Demchuk, AM ;
Zhang, JJ ;
Buchan, AM .
LANCET, 2000, 355 (9216) :1670-1674
[3]   e-ASPECTS software improves interobserver agreement and accuracy of interpretation of aspects score [J].
Brinjikji, Waleed ;
Abbasi, Mehdi ;
Arnold, Catherine ;
Benson, John C. ;
Braksick, Sherry A. ;
Campeau, Norbert ;
Carr, Carrie M. ;
Cogswell, Petrice M. ;
Klaas, James P. ;
Liebo, Greta B. ;
Little, Jason T. ;
Luetmer, Patrick H. ;
Messina, Steven A. ;
Nagelschneider, Alex A. ;
Schwartz, Kara M. ;
Wood, Christopher P. ;
Nasr, Deena M. ;
Kallmes, David F. .
INTERVENTIONAL NEURORADIOLOGY, 2021, 27 (06) :781-787
[4]   Mechanical thrombectomy in patients with acute ischemic stroke and ASPECTS ≤6: a meta-analysis [J].
Cagnazzo, Federico ;
Derraz, Imad ;
Dargazanli, Cyril ;
Lefevre, Pierre-Henri ;
Gascou, Gregory ;
Riquelme, Carlos ;
Bonafe, Alain ;
Costalat, Vincent .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2020, 12 (04) :350-+
[5]   Extraction of Dynamic Functional Connectivity From Brain Grey Matter and White Matter for MCI Classification [J].
Chen, Xiaobo ;
Zhang, Han ;
Zhang, Lichi ;
Shen, Celina ;
Lee, Seong-Whan ;
Shen, Dinggang .
HUMAN BRAIN MAPPING, 2017, 38 (10) :5019-5034
[6]   Early CT changes in patients admitted for thrombectomy Intrarater and interrater agreement [J].
Farzin, Behzad ;
Fahed, Robert ;
Guilbert, Francois ;
Poppe, Alexandre Y. ;
Daneault, Nicole ;
Durocher, Andre P. ;
Lanthier, Sylvain ;
Boudjani, Hayet ;
Khoury, Naim N. ;
Roy, Daniel ;
Weill, Alain ;
Gentric, Jean-Christophe ;
Batista, Andre L. ;
Letourneau-Guillon, Laurent ;
Bergeron, Francois ;
Henry, Marc-Antoine ;
Darsaut, Tim E. ;
Raymond, Jean .
NEUROLOGY, 2016, 87 (03) :249-256
[7]   Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials [J].
Goyal, Mayank ;
Menon, Bijoy K. ;
van Zwam, Wim H. ;
Dippel, Diederik W. J. ;
Mitchell, Peter J. ;
Demchuk, Andrew M. ;
Davalos, Antoni ;
Majoie, Charles B. L. M. ;
van der Lugt, Aad ;
de Miquel, Maria A. ;
Donnan, Geoff Rey A. ;
Roos, Yvo B. W. E. M. ;
Bonafe, Alain ;
Jahan, Reza ;
Diener, Hans-Christoph ;
van den Berg, Lucie A. ;
Levy, Elad I. ;
Berkhemer, Olvert A. ;
Pereira, Vitor M. ;
Rempel, Jeremy ;
Millan, Monica ;
Davis, Stephen M. ;
Roy, Daniel ;
Thornton, John ;
San Roman, Luis ;
Ribo, Marc ;
Beumer, Debbie ;
Stouch, Bruce ;
Brown, Scott ;
Campbell, Bruce C. V. ;
van Oostenbrugge, Robert J. ;
Saver, Jeff Rey L. ;
Hill, Michael D. ;
Jovin, Tudor G. .
LANCET, 2016, 387 (10029) :1723-1731
[8]  
Han M., 2019, Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019, V2349
[9]   Brain Asymmetry Detection and Machine Learning Classification for Diagnosis of Early Dementia [J].
Herzog, Nitsa J. ;
Magoulas, George D. .
SENSORS, 2021, 21 (03) :1-17
[10]   Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools [J].
Hoelter, Philip ;
Muehlen, Iris ;
Goelitz, Philipp ;
Beuscher, Vanessa ;
Schwab, Stefan ;
Doerfler, Arnd .
NEURORADIOLOGY, 2020, 62 (10) :1231-1238