Photonic Crystal-Structures for THz Vacuum Electron Devices

被引:41
作者
Letizia, Rosa [1 ,2 ]
Mineo, Mauro [1 ]
Paoloni, Claudio [1 ]
机构
[1] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
[2] Cockcroft Inst, Warrington WA4 4AD, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
Backward-wave oscillator (BWO); corrugated waveguide; photonic bandgap (PBG); photonic crystal (PhC); THz; vacuum electron devices; WAVE; BEAM;
D O I
10.1109/TED.2014.2366639
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The technology of photonic crystals (PhCs) is investigated here to improve the performance of THz vacuum electron devices. Compared with conventional metallic waveguides, the PhC arrangement alleviates typical issues in THz vacuum electron tubes, i.e. difficult vacuum pumping process and assembling, and improves the input/output coupling. A slow-wave structure (SWS) based on a corrugated waveguide assisted by PhC lateral walls and the efficient design of a PhC coupler for sheet-beam interaction devices are demonstrated. Based on the proposed technology, a backward-wave oscillator (BWO) is designed in this paper. Cold parameters of the novel PhC SWS as well as 3-D particle-in-cell simulations of the overall BWO are investigated, obtaining more than 70-mW-peak output power at 0.650 THz for beam voltage of 11 kV and beam current of 6 mA.
引用
收藏
页码:178 / 183
页数:6
相关论文
共 28 条
[1]  
Baig A., 2012, ENCY NANOTECHNOLOGY, P1359
[2]   Practical Aspects of EIK Technology [J].
Berry, Dave ;
Deng, Henry ;
Dobbs, Richard ;
Horoyski, Peter ;
Hyttinen, Mark ;
Kingsmill, Andrew ;
MacHattie, Ross ;
Roitman, Albert ;
Sokol, Ed ;
Steer, Brian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) :1830-1835
[3]   Vacuum Electronic High Power Terahertz Sources [J].
Booske, John H. ;
Dobbs, Richard J. ;
Joye, Colin D. ;
Kory, Carol L. ;
Neil, George R. ;
Park, Gun-Sik ;
Park, Jaehun ;
Temkin, Richard J. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2011, 1 (01) :54-75
[4]  
Borisov A. A., 2011, 2011 IEEE International Vacuum Electronics Conference (IVEC 2011), P437, DOI 10.1109/IVEC.2011.5747063
[5]   Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs [J].
Chutinan, A ;
Okano, M ;
Noda, S .
APPLIED PHYSICS LETTERS, 2002, 80 (10) :1698-1700
[6]  
Dayton J. A. Jr., 2012, 2012 IEEE Thirteenth International Vacuum Electronics Conference and the ninth International Vacuum Electron Sources Conference (IVEC-IVESC 2012), P33, DOI 10.1109/IVEC.2012.6262063
[7]   Study of Traveling Wave Tube With Folded-Waveguide Circuit Shielded by Photonic Crystals [J].
Gong, Yubin ;
Yin, Hairong ;
Wei, Yanyu ;
Yue, Lingna ;
Deng, Mingjin ;
Lu, Zhigang ;
Xu, Xiong ;
Wang, Wenxiang ;
Liu, PuKun ;
Liao, FuJiang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (05) :1137-1145
[8]   USER-CONFIGURABLE MAGIC FOR ELECTROMAGNETIC PIC CALCULATIONS [J].
GOPLEN, B ;
LUDEKING, L ;
SMITHE, D ;
WARREN, G .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 87 (1-2) :54-86
[9]   Experimental investigations on miniaturized high-frequency vacuum electron devices [J].
Han, ST ;
Jeon, SG ;
Shin, YM ;
Jang, KH ;
So, JK ;
Kim, JH ;
Chang, SS ;
Park, GS .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (02) :679-684
[10]  
JOANNOPOULOS J. D., 2008, Photonic Crystals: Molding the Flow of Light