A second order virtual node method for elliptic problems with interfaces and irregular domains

被引:92
作者
Bedrossian, Jacob [1 ]
von Brecht, James H. [1 ]
Zhu, Siwei [1 ]
Sifakis, Eftychios [1 ]
Teran, Joseph M. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Elliptic interface problems; Embedded interface methods; Virtual node methods; Variational methods; FINITE-ELEMENT-METHOD; EMBEDDED BOUNDARY METHOD; DISCONTINUOUS COEFFICIENTS; FICTITIOUS-DOMAIN; MATCHED INTERFACE; POISSONS-EQUATION; ARBITRARY DISCONTINUITIES; INCOMPRESSIBLE FLOWS; FLUID; DISCRETIZATION;
D O I
10.1016/j.jcp.2010.05.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a second order accurate, geometrically flexible and easy to implement method for solving the variable coefficient Poisson equation with interfacial discontinuities or on irregular domains, handling both cases with the same approach. We discretize the equations using an embedded approach on a uniform Cartesian grid employing virtual nodes at interfaces and boundaries. A variational method is used to define numerical stencils near these special virtual nodes and a Lagrange multiplier approach is used to enforce jump conditions and Dirichlet boundary conditions. Our combination of these two aspects yields a symmetric positive definite discretization. In the general case, we obtain the standard 5-point stencil away from the interface. For the specific case of interface problems with continuous coefficients, we present a discontinuity removal technique that admits use of the standard 5-point finite difference stencil everywhere in the domain. Numerical experiments indicate second order accuracy in L-infinity. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:6405 / 6426
页数:22
相关论文
共 73 条
[1]   A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems [J].
Adams, L ;
Chartier, TP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :762-784
[2]  
ALMGREN A, 1997, SIAM J SCI COMPUT, V18, P724
[3]  
[Anonymous], 2006, SIAM FRONT APPL MATH
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[6]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[7]  
Balay S., 2008, ANL9511REVISION300
[8]   Fracturing rigid materials [J].
Bao, Zhaosheng ;
Hong, Jeong-Mo ;
Teran, Joseph ;
Fedkiw, Ronald .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (02) :370-378
[9]  
Beale J., 2006, COM APPL MATH COMPUT, V1, P207
[10]   CORRECTION TO THE ARTICLE A COMPARISON OF THE EXTENDED FINITE ELEMENT METHOD WITH THE IMMERSED INTERFACE METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS AND SINGULAR SOURCES BY VAUGHAN ET AL. [J].
Beale, J. Thomas ;
Chopp, David L. ;
Leveque, Randall J. ;
Li, Zhilin .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2008, 3 (01) :95-100