Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials

被引:12
作者
Kostyukov, Artem S. [1 ]
Ershov, Alexander E. [1 ,2 ,3 ]
Gerasimov, Valeriy S. [1 ,2 ]
Filimonov, Sergey A. [1 ]
Rasskazov, Ilia L. [4 ]
Karpov, Sergey V. [1 ,3 ,5 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk, Russia
[2] RAS, Inst Computat Modeling, SB, Krasnoyarsk, Russia
[3] Siberian State Univ Sci & Technol, Krasnoyarsk, Russia
[4] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[5] RAS, KSC, Kirensky Inst Phys, Fed Res Ctr,SB, Krasnoyarsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Plasmonic photothermal therapy; Conducting oxides; Nanoparticle; Nanoshell; TRANSIENT THERMAL-MODEL; OPTICAL-ABSORPTION; RECENT PROGRESS; GOLD; RESONANCE; THERAPY; TUMORS; OPTIMIZATION; SYSTEMS;
D O I
10.1016/j.jqsrt.2019.106599
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles [J].
Abadeer, Nardine S. ;
Murphy, Catherine J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (09) :4691-4716
[2]   High Temperature Nanoplasmonics: The Key Role of Nonlinear Effects [J].
Alabastri, Alessandro ;
Toma, Andrea ;
Malerba, Mario ;
De Angelis, Francesco ;
Zaccaria, Remo Proietti .
ACS PHOTONICS, 2015, 2 (01) :115-120
[3]  
[Anonymous], 1995, OPTICAL PROPERTIES M, DOI DOI 10.1007/978-3-662-09109-8
[4]   Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation [J].
Avetisyan, Yuri A. ;
Yakunin, Alexander N. ;
Tuchin, Valery V. .
JOURNAL OF BIOPHOTONICS, 2012, 5 (10) :734-744
[5]   Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation [J].
Avetisyan, Yuri A. ;
Yakunin, Alexander N. ;
Tuchin, Valery V. .
APPLIED OPTICS, 2012, 51 (10) :C88-C94
[6]  
Bohren C. F., 1998, Wiley Science Series, DOI 10.1002/9783527618156
[7]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[8]   Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods [J].
Chen, Qin ;
Ren, Yatao ;
Qi, Hong ;
Ruan, Liming .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 212 :1-9
[9]   Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: A computational modeling [J].
Dombrovsky, Leonid A. ;
Timchenko, Victoria ;
Pathak, Chinmay ;
Piazena, Helmut ;
Mueller, Werner ;
Jackson, Michael .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 85 :311-320
[10]   Indirect heating strategy for laser induced hyperthermia: An advanced thermal model [J].
Dombrovsky, Leonid A. ;
Timchenko, Victoria ;
Jackson, Michael .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (17-18) :4688-4700