Measurement of a superconducting qubit with a microwave photon counter

被引:73
作者
Opremcak, A. [1 ]
Pechenezhskiy, I. V. [1 ,3 ]
Howington, C. [2 ]
Christensen, B. G. [1 ]
Beck, M. A. [1 ]
Leonard, E., Jr. [1 ]
Suttle, J. [1 ]
Wilen, C. [1 ]
Nesterov, K. N. [1 ]
Ribeill, G. J. [1 ,4 ]
Thorbeck, T. [1 ,5 ]
Schlenker, F. [1 ]
Vavilov, M. G. [1 ]
Plourde, B. L. T. [2 ]
McDermott, R. [1 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Raytheon BBN Technol, Cambridge, MA 02138 USA
[5] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
QUANTUM CIRCUIT; STATES;
D O I
10.1126/science.aat4625
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fast, high-fidelity measurement is a key ingredient for quantum error correction. Conventional approaches to the measurement of superconducting qubits, involving linear amplification of a microwave probe tone followed by heterodyne detection at room temperature, do not scale well to large system sizes. We introduce an approach to measurement based on a microwave photon counter demonstrating raw single-shot measurement fidelity of 92%. Moreover, the intrinsic damping of the photon counter is used to extract the energy released by the measurement process, allowing repeated high-fidelity quantum nondemolition measurements. Our scheme provides access to the classical outcome of projective quantum measurement at the millikelvin stage and could form the basis for a scalable quantum-to-classical interface.
引用
收藏
页码:1239 / +
页数:4
相关论文
共 33 条
[1]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[2]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[3]   Microwave Photon Counter Based on Josephson Junctions [J].
Chen, Y. -F. ;
Hover, D. ;
Sendelbach, S. ;
Maurer, L. ;
Merkel, S. T. ;
Pritchett, E. J. ;
Wilhelm, F. K. ;
McDermott, R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[4]   Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout [J].
Cooper, KB ;
Steffen, M ;
McDermott, R ;
Simmonds, RW ;
Oh, S ;
Hite, DA ;
Pappas, DP ;
Martinis, JM .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :180401-1
[5]   Fluxon Readout of a Superconducting Qubit [J].
Fedorov, Kirill G. ;
Shcherbakova, Anastasia V. ;
Wolf, Michael J. ;
Beckmann, Detlef ;
Ustinov, Alexey V. .
PHYSICAL REVIEW LETTERS, 2014, 112 (16)
[6]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[7]   High-fidelity qubit measurement with a microwave-photon counter [J].
Govia, Luke C. G. ;
Pritchett, Emily J. ;
Xu, Canran ;
Plourde, B. L. T. ;
Vavilov, Maxim G. ;
Wilhelm, Frank K. ;
McDermott, R. .
PHYSICAL REVIEW A, 2014, 90 (06)
[8]   Design of a ballistic fluxon qubit readout [J].
Herr, Anna ;
Fedorov, Arkady ;
Shnirman, Alexander ;
Il'ichev, Evgeny ;
Schon, Gerd .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (11) :S450-S454
[9]   Generation of Fock states in a superconducting quantum circuit [J].
Hofheinz, Max ;
Weig, E. M. ;
Ansmann, M. ;
Bialczak, Radoslaw C. ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Wang, H. ;
Martinis, John M. ;
Cleland, A. N. .
NATURE, 2008, 454 (7202) :310-314
[10]   Tunable Superconducting Qubits with Flux-Independent Coherence [J].
Hutchings, M. D. ;
Hertzberg, J. B. ;
Liu, Y. ;
Bronn, N. T. ;
Keefe, G. A. ;
Brink, Markus ;
Chow, Jerry M. ;
Plourde, B. L. T. .
PHYSICAL REVIEW APPLIED, 2017, 8 (04)