The spaser as a nanoscale quantum generator and ultrafast amplifier

被引:312
作者
Stockman, Mark I. [1 ,2 ,3 ]
机构
[1] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Univ Munich, D-85748 Garching, Germany
关键词
nanoplasmonics; quantum generator; nanoscale quantum amplifier; bistability; gain medium; saturable absorber; STIMULATED-EMISSION; LASING SPASER; GAIN; METAMATERIALS; ENHANCEMENT; RESONANCES; SCALE;
D O I
10.1088/2040-8978/12/2/024004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nanoplasmonics has recently experienced explosive development with many novel ideas and dramatic achievements in both fundamentals and applications. The spaser has been predicted and observed experimentally as an active element-a generator of coherent local fields. Even greater progress will be achieved if the spaser can function as an ultrafast nanoamplifier-an optical counterpart of the MOSFET (metal-oxide-semiconductor field effect transistor). A formidable problem with this is that the spaser has inherent feedback, causing quantum generation of nanolocalized surface plasmons and saturation and consequent elimination of the net gain, making it unsuitable for amplification. We have overcome this inherent problem and shown that the spaser can perform functions of an ultrafast nanoamplifier in two modes: transient and bistable. On the basis of quantum density matrix (optical Bloch) equations we have shown that the spaser amplifies with gain greater than or similar to 50 with a switching time less than or similar to 100 fs (potentially, similar to 10 fs). This prospective spaser technology will further broaden both fundamental and applied horizons of nanoscience, in particular enabling ultrafast microprocessors working at 10-100 THz clock speed. Other prospective applications are in ultrasensing, ultradense and ultrafast information storage, and biomedicine. The spasers are based on metals and, in contrast to semiconductors, are highly resistive to ionizing radiation, high temperatures, microwave radiation, and other adverse environments.
引用
收藏
页数:13
相关论文
共 44 条
[11]   Self-consistent calculation of metamaterials with gain [J].
Fang, A. ;
Koschny, Th. ;
Wegener, M. ;
Soukoulis, C. M. .
PHYSICAL REVIEW B, 2009, 79 (24)
[12]   The design and simulated performance of a coated nano-particle laser [J].
Gordon, Joshua A. ;
Ziolkowski, Richard W. .
OPTICS EXPRESS, 2007, 15 (05) :2622-2653
[13]   Lasing in metallic- Coated nanocavities [J].
Hill, Martin T. ;
Oei, Yok-Siang ;
Smalbrugge, Barry ;
Zhu, Youcai ;
De Vries, Tjibbe ;
Van Veldhoven, Peter J. ;
Van Otten, Frank W. M. ;
Eijkemans, Tom J. ;
Turkiewicz, Jaroslaw P. ;
De Waardt, Huug ;
Geluk, Erik Jan ;
Kwon, Soon-Hong ;
Lee, Yong-Hee ;
Notzel, Richard ;
Smit, Meint K. .
NATURE PHOTONICS, 2007, 1 (10) :589-594
[14]   Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J].
Hill, Martin T. ;
Marell, Milan ;
Leong, Eunice S. P. ;
Smalbrugge, Barry ;
Zhu, Youcai ;
Sun, Minghua ;
van Veldhoven, Peter J. ;
Geluk, Erik Jan ;
Karouta, Fouad ;
Oei, Yok-Siang ;
Notzel, Richard ;
Ning, Cun-Zheng ;
Smit, Meint K. .
OPTICS EXPRESS, 2009, 17 (13) :11107-11112
[15]   Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J].
Hirsch, LR ;
Stafford, RJ ;
Bankson, JA ;
Sershen, SR ;
Rivera, B ;
Price, RE ;
Hazle, JD ;
Halas, NJ ;
West, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13549-13554
[16]  
Israel A, 2007, LASER FOCUS WORLD, V43, P99
[17]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[18]  
Kahng D., 1963, U.S. patent, Patent No. [3,102,230, 3102230, 3102230 A]
[19]   High-harmonic generation by resonant plasmon field enhancement [J].
Kim, Seungchul ;
Jin, Jonghan ;
Kim, Young-Jin ;
Park, In-Yong ;
Kim, Yunseok ;
Kim, Seung-Woo .
NATURE, 2008, 453 (7196) :757-760
[20]  
KIRAKOSYAN AS, 2009, ARXIV09080647