Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies

被引:255
作者
Awschalom, David [1 ]
Berggren, Karl K. [2 ]
Bernien, Hannes [1 ]
Bhave, Sunil [3 ]
Carr, Lincoln D. [4 ]
Davids, Paul [5 ]
Economou, Sophia E. [6 ]
Englund, Dirk [2 ]
Faraon, Andrei [7 ,8 ]
Fejer, Martin [9 ]
Guha, Saikat [10 ,11 ,12 ]
Gustafsson, Martin, V [13 ]
Hu, Evelyn [14 ,15 ]
Jiang, Liang [1 ]
Kim, Jungsang [16 ,17 ]
Korzh, Boris [18 ]
Kumar, Prem [19 ,20 ]
Kwiat, Paul G. [21 ,22 ]
Loncar, Marko [14 ,15 ]
Lukin, Mikhail D. [15 ,23 ]
Miller, David A. B. [9 ]
Monroe, Christopher [24 ,25 ,26 ]
Nam, Sae Woo [27 ]
Narang, Prineha [14 ,15 ]
Orcutt, Jason S. [28 ]
Raymer, Michael G. [29 ,30 ]
Safavi-Naeini, Amir H. [9 ]
Spiropulu, Maria [31 ]
Srinivasan, Kartik [25 ,32 ]
Sun, Shuo [33 ,34 ]
Vuckovic, Jelena [9 ]
Waks, Edo [25 ,35 ]
Walsworth, Ronald [24 ,35 ,36 ,37 ]
Weiner, Andrew M. [3 ,38 ]
Zhang, Zheshen [10 ,39 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Colorado Sch Mines, Dept Phys, 1500 Illinois St, Golden, CO 80401 USA
[5] Sandia Natl Labs, Photon & Phonon Microsyst, Albuquerque, NM 87185 USA
[6] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[7] CALTECH, TJ Watson Lab Appl Phys, Pasadena, CA 91125 USA
[8] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[9] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[10] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[11] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[12] Univ Arizona, Dept Appl Math, Tucson, AZ 85721 USA
[13] Raytheon BBN Technol, Cambridge, MA 02138 USA
[14] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[15] Harvard Univ, Harvard Quantum Initiat HQI, Cambridge, MA 02138 USA
[16] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[17] IonQ Inc, College Pk, MD 20740 USA
[18] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[19] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[20] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[21] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[22] Univ Illinois, IQUIST, Urbana, IL 61801 USA
[23] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[24] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[25] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[26] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[27] NIST, Boulder, CO 80305 USA
[28] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[29] Univ Oregon, Oregon Ctr Opt Mol & Quantum Sci, Eugene, OR 97403 USA
[30] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[31] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[32] NIST, Gaithersburg, MD 20899 USA
[33] Univ Colorado, JILA, Boulder, CO 80309 USA
[34] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[35] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[36] Univ Maryland, Quantum Technol Ctr, College Pk, MD 20742 USA
[37] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[38] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
[39] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 01期
关键词
ENTANGLEMENT DISTRIBUTION; HERALDED ENTANGLEMENT; KEY DISTRIBUTION; STATE TRANSFER; TELEPORTATION; EFFICIENCY; CONVERSION; MEMORY; SPIN; COMMUNICATION;
D O I
10.1103/PRXQuantum.2.017002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Just as "classical" information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the "interconnect," a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a "quantum internet" poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on "Quantum Interconnects" that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry, and national laboratories is required.
引用
收藏
页数:21
相关论文
共 155 条
[1]   High performance single photon counting and timing with Single Photon Avalanche Diodes [J].
Acconcia, G. ;
Gulinatti, A. ;
Ghioni, M. ;
Rech, I. .
ADVANCED PHOTON COUNTING TECHNIQUES XIII, 2019, 10978
[2]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[3]  
Alexeev Y., PRX QUANTUM
[4]  
Altman E., 2021, PRX QUANTUM
[5]  
[Anonymous], 2018, Subcommittee on Quantum Information Science, National Strategic Overview for Quantum Information Science
[6]   Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit [J].
Appel, J. ;
Windpassinger, P. J. ;
Oblak, D. ;
Hoff, U. B. ;
Kjaergaard, N. ;
Polzik, E. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :10960-10965
[7]   Quantum communication with coherent states and linear optics [J].
Arrazola, Juan Miguel ;
Luetkenhaus, Norbert .
PHYSICAL REVIEW A, 2014, 90 (04)
[8]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[9]   Material platforms for spin-based photonic quantum technologies [J].
Atature, Mete ;
Englund, Dirk ;
Vamivakas, Nick ;
Lee, Sang-Yun ;
Wrachtrup, Joerg .
NATURE REVIEWS MATERIALS, 2018, 3 (05) :38-51
[10]   On-demand quantum state transfer and entanglement between remote microwave cavity memories [J].
Axline, Christopher J. ;
Burkhart, Luke D. ;
Pfaff, Wolfgang ;
Zhang, Mengzhen ;
Chou, Kevin ;
Campagne-Ibarcq, Philippe ;
Reinhold, Philip ;
Frunzio, Luigi ;
Girvin, S. M. ;
Jiang, Liang ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2018, 14 (07) :705-+