Superqubits

被引:22
作者
Borsten, L. [1 ]
Dahanayake, D. [1 ]
Duff, M. J. [1 ]
Rubens, W. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
关键词
ENTANGLEMENT;
D O I
10.1103/PhysRevD.81.105023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide a supersymmetric generalization of n quantum bits by extending the local operations and classical communication entanglement equivalence group [SU(2)](n) to the supergroup [uOSp(1/2)](n) and the stochastic local operations and classical communication equivalence group [SL(2, C)](n) to the supergroup [OSp(1/2)](n). We introduce the appropriate supersymmetric generalizations of the conventional entanglement measures for the cases of n = 2 and n = 3. In particular, super-Greenberger-Horne-Zeilinger states are characterized by a nonvanishing superhyperdeterminant.
引用
收藏
页数:16
相关论文
共 33 条
[1]   Three-qubit pure-state canonical forms [J].
Acín, A ;
Andrianov, A ;
Jané, E ;
Tarrach, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6725-6739
[2]   Supersymmetric valence bond solid states [J].
Arovas, Daniel P. ;
Hasebe, Kazuki ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2009, 79 (22)
[3]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[4]   THE GROUP WITH GRASSMANN STRUCTURE UOSP(1.2) [J].
BEREZIN, FA ;
TOLSTOY, VN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (03) :409-428
[5]   Freudenthal triple classification of three-qubit entanglement [J].
Borsten, L. ;
Dahanayake, D. ;
Duff, M. J. ;
Rubens, W. ;
Ebrahim, H. .
PHYSICAL REVIEW A, 2009, 80 (03)
[6]   Black holes, qubits and octonions [J].
Borsten, L. ;
Dahanayake, D. ;
Duff, M. J. ;
Ebrahim, H. ;
Rubens, W. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 471 (3-4) :113-219
[7]  
Castellani L., ARXIV10013753
[8]   Triality invariance in the N=2 superstring [J].
Castellani, Leonardo ;
Grassi, Pietro Antonio ;
Sommovigo, Luca .
PHYSICS LETTERS B, 2009, 678 (03) :308-312
[9]  
Cayley A., 1845, Cambridge Mathematical Journal, V4, P193
[10]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5