Harnack inequality for the fractional nonlocal linearized Monge-Ampere equation

被引:5
作者
Maldonado, Diego [1 ]
Stinga, Pablo Raul [2 ]
机构
[1] Kansas State Univ, Dept Math, 138 Cardwell Hall, Manhattan, KS 66506 USA
[2] Iowa State Univ, Dept Math, 396 Carver Hall, Ames, IA 50011 USA
关键词
EXTENSION PROBLEM; REGULARITY;
D O I
10.1007/s00526-017-1205-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional nonlocal linearized Monge-Ampere equation is introduced. A Harnack inequality for nonnegative solutions to the Poisson problem on Monge-Ampere sections is proved.
引用
收藏
页数:45
相关论文
共 45 条
[1]  
[Anonymous], 1983, J. Soviet Math., DOI 10.1007/BF01094448
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[4]  
[Anonymous], 1971, Lecture Notes in Mathematics
[5]  
[Anonymous], 1995, Classics in Mathematics
[6]  
Arendt W., 2001, Monographs in Mathematics, V96
[7]  
Arendt W., 2014, ANN SCUOLA NORM-SCI, V13, P1
[8]  
Caffarelli L., 2015, Ann. PDE, V1, P1
[9]  
Caffarelli LA, 1997, AM J MATH, V119, P423
[10]   Real analysis related to the Monge-Ampere equation [J].
Caffarelli, LA ;
Gutierrez, CE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) :1075-1092