A STUDY ON THE UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS FOR CONTINUOUS FUNCTIONS ON A STURM-LIOUVILLE PROBLEM

被引:2
作者
Maris, Emir Ali [1 ]
Goktas, Sertac [2 ]
机构
[1] Mersin Univ, Vocat Sch Tech Sci, TR-33343 Mersin, Turkey
[2] Mersin Univ, Dept Math, TR-33343 Mersin, Turkey
关键词
differential operator; eigenvalues; root functions; uniform convergence of spectral expansion; FOURIER-SERIES; PARAMETER;
D O I
10.18514/MMN.20??.2982
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is about investigating the uniform convergence conditions of spectral expansions of continuous functions in terms of root functions of a spectral problem with the same eigenparameter in the second-order differential equation and depending on quadratically in one of the boundary conditions on a closed interval.
引用
收藏
页码:1063 / 1080
页数:18
相关论文
共 22 条
[11]   On the uniform convergence of the Fourier series for a spectral problem with squared spectral parameter in a boundary condition [J].
Kapustin, N. Yu. .
DIFFERENTIAL EQUATIONS, 2010, 46 (10) :1507-1510
[12]   Convergence of spectral expansions for functions of the Holder class for two problems with a spectral parameter in the boundary condition [J].
Kapustin, NY ;
Moiseev, EI .
DIFFERENTIAL EQUATIONS, 2000, 36 (08) :1182-1188
[13]   A remark on the convergence problem for spectral expansions corresponding to a classical problem with spectral parameter in the boundary condition [J].
Kapustin, NY ;
Moiseev, EI .
DIFFERENTIAL EQUATIONS, 2001, 37 (12) :1677-1683
[14]  
Kerimov N. B., 2014, P IMM NAS, P1245
[15]  
Kerimov N. B., 2006, ELECTRON J DIFFER EQ, V80, P1
[16]   On the Uniform Convergence of Fourier Series Expansions for Sturm-Liouville Problems with a Spectral Parameter in the Boundary Conditions [J].
Kerimov, Nazim B. ;
Maris, Emir A. .
RESULTS IN MATHEMATICS, 2018, 73 (03)
[17]   On the uniform convergence of the Fourier series for one spectral problem with a spectral parameter in a boundary condition [J].
Kerimov, Nazim B. ;
Maris, Emir A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (09) :2298-2309
[18]  
Levitan B.M., 1991, Sturm-Liouville and Dirac Operators, DOI DOI 10.1007/978-94-011-3748-5
[19]  
Ragusa M.A., 1999, Comment Math Univ Carolin, V404, P651
[20]   Cauchy-Dirichlet problem associated to divergence form parabolic equations [J].
Ragusa, MA .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (03) :377-393