A STUDY ON THE UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS FOR CONTINUOUS FUNCTIONS ON A STURM-LIOUVILLE PROBLEM

被引:2
作者
Maris, Emir Ali [1 ]
Goktas, Sertac [2 ]
机构
[1] Mersin Univ, Vocat Sch Tech Sci, TR-33343 Mersin, Turkey
[2] Mersin Univ, Dept Math, TR-33343 Mersin, Turkey
关键词
differential operator; eigenvalues; root functions; uniform convergence of spectral expansion; FOURIER-SERIES; PARAMETER;
D O I
10.18514/MMN.20??.2982
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is about investigating the uniform convergence conditions of spectral expansions of continuous functions in terms of root functions of a spectral problem with the same eigenparameter in the second-order differential equation and depending on quadratically in one of the boundary conditions on a closed interval.
引用
收藏
页码:1063 / 1080
页数:18
相关论文
共 22 条
[1]  
Aliyev YN, 2008, ARAB J SCI ENG, V33, P123
[2]  
[Anonymous], LINEAR DIFFERENTIAL
[3]  
Bary N.K., 1964, A Treatise on Trigonometric Series, VI
[4]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. I [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 :631-645
[5]  
Code W. J., 2003, THESIS
[6]   Sturm-Liouville problems with boundary conditions depending quadratically on the eigenparameter [J].
Code, WJ ;
Browne, PJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (02) :729-742
[7]   ON THE UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS FOR A SPECTRAL PROBLEM WITH A BOUNDARY CONDITION RATIONALLY DEPENDING ON THE EIGENPARAMETER [J].
Goktas, Sertac ;
Kerimov, Nazim B. ;
Maris, Emir A. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) :1175-1187
[8]  
Guariglia E, 2015, FRACTIONAL DYNAMICS, P357
[9]  
Ince E. L., 1956, ORDINARY DIFFERENTIA, VI
[10]   On the uniform convergence in C 1 of Fourier series for a spectral problem with squared spectral parameter in a boundary condition [J].
Kapustin, N. Yu .
DIFFERENTIAL EQUATIONS, 2011, 47 (10) :1408-1413