The effect of samaria doped ceria coating on the performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery

被引:37
|
作者
He, Fei [1 ]
Wang, Xiaoqing [2 ]
Du, Chenqiang [3 ]
Baker, Andrew P. [1 ]
Wu, Junwei [1 ]
Zhang, Xinhe [4 ]
机构
[1] Harbin Inst Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Tianjin Polytech Univ, Dept Appl Chem, Tianjin 300387, Peoples R China
[3] Tianjin Univ, Dept Appl Chem, Tianjin 300072, Peoples R China
[4] Dongguan McNair Technol Co Ltd, Dongguan 523700, Guangdong, Peoples R China
关键词
Lithium-rich layered oxide; Samaria doped ceria; Surface modification; Lithium ion battery; ENHANCED CYCLING STABILITY; LAYERED OXIDE MATERIAL; LI-ION; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; STRUCTURAL TRANSFORMATION; SURFACE MODIFICATION; ENERGY-STORAGE; ELECTRODES;
D O I
10.1016/j.electacta.2014.11.139
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The lithium-rich layered oxide; xLi(2)MnO(3)center dot(1-x)LiMeO2 (Me = Co, Ni, Mn, etc.) is one of the most promising cathode materials for lithium-ion batteries in electric vehicles and energy storage systems due to its high energy density, low cost, and excellent thermal stability. In this work, Li1.2Ni0.13Co0.13Mn0.54O2 was synthesized and novel coating was applied to enhance the performance. The pristine Li1.2Ni0.13Co0.13Mn0.54O2 powder was synthesized by an aqueous solution method, followed by calcination at 900 degrees C in air, and the surface was then modified by coating with samaria doped ceria (SDC). Both the pristine and the surface modified materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and electrochemical measurements. The SDC coating with 1 wt.% was found to be the most effective in improving the discharge capacity. Specifically, it delivered 261 mAh g(-1) at 0.1 C rate with lower initial irreversible capacity loss. This superior electrochemical performance is attributed to the function of SDC as protective layer suppressing the side reaction between the electrode and the electrolyte, and decreasing the electron charge transfer resistance, as evidenced by the collected electrochemical impedance spectroscopy (EIS) data. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:484 / 491
页数:8
相关论文
共 50 条
  • [21] Sacrificed template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 spheres for lithium-ion battery cathodes
    Chenhao Zhao
    Rui Liu
    Xinru Liu
    Xinxin Wang
    Fan Feng
    Qiang Shen
    Journal of Nanoparticle Research, 2013, 15
  • [22] Li1.2Ni0.13Co0.13Mn0.54O2 of Al2O3-coating cathode for high-performance lithium-ion batteries
    Zhang, Zhiqi
    Lai, Xianxin
    Fan, Kaibo
    Liu, Song
    Chai, Lili
    Zhu, Zhongheng
    Sun, Ling
    Zhou, Zhehui
    Wang, Li
    Hu, Zhengguang
    Zhao, Yong
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (03)
  • [23] Nano-Al2O3 Coated Li-rich Cathode Material Li1.2Ni0.13Co0.13Mn0.54O2 for Highly Improved Lithium-ion Batteries
    Chen, Liangdan
    Zou, Wei
    Wu, Liang
    Xia, Fanjie
    Hu, Zhiyi
    Li, Yu
    Su, Baolian
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (06): : 1329 - 1336
  • [24] Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by Li-ion conductor
    Wang, Ting
    Yang, Ze
    Jiang, Yan
    Li, Guolong
    Huang, Yunhui
    RSC ADVANCES, 2016, 6 (68): : 63749 - 63753
  • [25] Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries
    Chen, J. J.
    Li, Z. D.
    Xiang, H. F.
    Wu, W. W.
    Cheng, S.
    Zhang, L. J.
    Wang, Q. S.
    Wu, Y. C.
    RSC ADVANCES, 2015, 5 (04): : 3031 - 3038
  • [26] Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery
    ChenQiang Du
    Fei Zhang
    ChenXiang Ma
    JunWei Wu
    ZhiYuan Tang
    XinHe Zhang
    Deyang Qu
    Ionics, 2016, 22 : 209 - 218
  • [27] Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template
    Shi, S. J.
    Tu, J. P.
    Tang, Y. Y.
    Zhang, Y. Q.
    Wang, X. L.
    Gu, C. D.
    JOURNAL OF POWER SOURCES, 2013, 240 : 140 - 148
  • [28] Effect of fepo4 coating on performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery
    Li, Zhong
    Hong, Jian-He
    He, Gang
    LÜ, Lu
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30 (02): : 129 - 134
  • [29] Exploring the Effect of a MnO2 Coating on the Electrochemical Performance of a Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
    Li, Zhong
    Yang, Peiyue
    Zheng, Zhongxiang
    Pan, Qiyun
    Liu, Yisi
    Li, Yao
    Xuan, Jinnan
    MICROMACHINES, 2021, 12 (11)
  • [30] Improving Electrochemical Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Material by Al3+ Doping
    Liang, Xinghua
    Wu, Hanjie
    Chen, Haiyan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (11): : 9164 - 9174