共 45 条
The effect of samaria doped ceria coating on the performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery
被引:37
作者:
He, Fei
[1
]
Wang, Xiaoqing
[2
]
Du, Chenqiang
[3
]
Baker, Andrew P.
[1
]
Wu, Junwei
[1
]
Zhang, Xinhe
[4
]
机构:
[1] Harbin Inst Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Tianjin Polytech Univ, Dept Appl Chem, Tianjin 300387, Peoples R China
[3] Tianjin Univ, Dept Appl Chem, Tianjin 300072, Peoples R China
[4] Dongguan McNair Technol Co Ltd, Dongguan 523700, Guangdong, Peoples R China
关键词:
Lithium-rich layered oxide;
Samaria doped ceria;
Surface modification;
Lithium ion battery;
ENHANCED CYCLING STABILITY;
LAYERED OXIDE MATERIAL;
LI-ION;
ELECTROCHEMICAL PERFORMANCE;
HIGH-CAPACITY;
STRUCTURAL TRANSFORMATION;
SURFACE MODIFICATION;
ENERGY-STORAGE;
ELECTRODES;
D O I:
10.1016/j.electacta.2014.11.139
中图分类号:
O646 [电化学、电解、磁化学];
学科分类号:
081704 ;
摘要:
The lithium-rich layered oxide; xLi(2)MnO(3)center dot(1-x)LiMeO2 (Me = Co, Ni, Mn, etc.) is one of the most promising cathode materials for lithium-ion batteries in electric vehicles and energy storage systems due to its high energy density, low cost, and excellent thermal stability. In this work, Li1.2Ni0.13Co0.13Mn0.54O2 was synthesized and novel coating was applied to enhance the performance. The pristine Li1.2Ni0.13Co0.13Mn0.54O2 powder was synthesized by an aqueous solution method, followed by calcination at 900 degrees C in air, and the surface was then modified by coating with samaria doped ceria (SDC). Both the pristine and the surface modified materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and electrochemical measurements. The SDC coating with 1 wt.% was found to be the most effective in improving the discharge capacity. Specifically, it delivered 261 mAh g(-1) at 0.1 C rate with lower initial irreversible capacity loss. This superior electrochemical performance is attributed to the function of SDC as protective layer suppressing the side reaction between the electrode and the electrolyte, and decreasing the electron charge transfer resistance, as evidenced by the collected electrochemical impedance spectroscopy (EIS) data. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:484 / 491
页数:8
相关论文