Blow-up of non-radial solutions for the L2 critical inhomogeneous NLS equation

被引:6
作者
Cardoso, Mykael [1 ]
Farah, Luiz Gustavo [2 ]
机构
[1] Univ Fed Piaui, Dept Math, Teresina, Brazil
[2] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, MG, Brazil
关键词
inhomogeneous NLS equation; L-2; critical; blow-up; non-radial solutions; SCHRODINGER-EQUATIONS; H-1; SOLUTIONS; SCATTERING; EXISTENCE;
D O I
10.1088/1361-6544/ac7b60
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the L-2 critical inhomogeneous nonlinear Schrodinger equation in R-N i partial derivative(t)u + Delta u + vertical bar x vertical bar(-b) vertical bar u vertical bar(4-2b/N) u = 0, where N >= 1 and 0 < b < min{2, N}. We prove that if u(0) is an element of H-1 (R-N) satisfies E[u(0)] < 0, then the corresponding solution blows-up in finite time. This is in sharp contrast to the classical L-2 critical nonlinear Schrodinger equation where this type of result is only known in the radial case for N >= 2.
引用
收藏
页码:4426 / 4436
页数:11
相关论文
共 15 条
[1]  
Bai R., 2021, ARXIV2103 13214
[2]   A VIRIAL-MORAWETZ APPROACH TO SCATTERING FOR THE NON-RADIAL INHOMOGENEOUS NLS [J].
Campos, Luccas ;
Cardoso, Mykael .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) :2007-2021
[3]  
Cardoso M., 2021, ARXIV210510748
[4]  
Demengel F, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4471-2807-6
[5]   Scattering for the Radial Focusing Inhomogeneous NLS Equation in Higher Dimensions [J].
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02) :449-512
[6]  
Genoud F, 2008, DISCRETE CONT DYN-A, V21, P137
[7]   An Inhomogeneous, L2-Critical, Nonlinear Schrodinger Equation [J].
Genoud, Francois .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (03) :283-290
[8]   Scattering for the non-radial energy-critical inhomogeneous NLS [J].
Guzman, Carlos M. ;
Murphy, Jason .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :187-210
[9]   On well posedness for the inhomogeneous nonlinear Schrodinger equation [J].
Guzman, Carlos M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :249-286
[10]  
Murphy J., 2021, ARXIV2101 04811